TELAAH TOPIK STOIKIOMETRI SMA: MISKONSEPSI DAN STRATEGI PEMBELAJARANNYA

  • Indah R Anugrah Jurusan Tadris Biologi, Fakultas IlmuTarbiyah dan Keguruan, IAIN Syekh Nurjati Cirebon
Keywords: misconception, multiple representation, stoichiometry, student-generated sub-micro diagrams

Abstract

The problem of student’s misconceptions of stoichiometry is still happening even though there have been so many studies done for identify misconception experienced by students. It is because most of those research is only focused on revealing student’saomisconceptions. The purpose ofathisastudyais to identifyatheatendency ofomisconceptions experienced by studentsuanduexamineatheaappropriate learning strategies that can be applied to avoid those misconceptions. Comparative study is performed to determine misconceptions appeared in the identification process through various diagnostic instruments, namely two-tier test, three-tier test and certainty of response index. Thearesultiofothispstudy showsithatimost of misconceptions appeared because rstudents are too focused on the algorithmic aspects and put aside the conceptual aspects in solving stoichiometric problems. It is caused by the instruction process which emphasizes the success of using formulas to solve numeric problems so students ignore understanding of related concepts. The use of chemical representation visualization through student-generated sub-micro diagrams is considered capable of being a link between macroscopic and symbolic phenomena so as to enhance students’s understanding of concepts related to stoichiometry.

References

Aini,PR.G., Ibnu, S. &RBudiasih, E. (2016). Identifikasimmiskonsepsindalam materi stoikiometri melalui soal diagnostik pthree-tier. Jurnal PembelajaraniKimia, 1(2), 50-56.

Anugrah, I.R., Nahadi, N. & Siswaningsih, W. (2013). Mengungkap miskonsepsi topic stoikiometri pada siswa kelas X melalui tes diagnostic two-tier (Skripsi). Universitas Pendidikan Indonesia.

Arasasingham, R.D., Taagepera, M., Potter, F. & Lonjers, S. (2004). Using knowledge space theory to access student understanding of stoichiometry. Journal of Chemical Education, 81(10), 1517-1523.

Astuti,PF., Redjeki, T. & Nurhayati,TN.D. (2016). Identifikasiomiskonsepsiwdan penyebabnya pada siswa kelas XI MIA SMA Negeri 1 Sukoharjo tahun pelajaran 2015/2016 pada materi pokok stoikiometri. JurnaljPendidikan Kimia, 5(2), 10-17.

Boujaoude, S. & Barakat,WH. (2000). Secondarydschoolmstudents’ difficulties with stoichiometry, School Science Review, 81(296), 91-98.

Chandrasegaran, A.L., Treagust,QD.F. & Mocerino, M. (2007). Enhancing students' usegofomultiple levels of representation to describe and explain chemical reactions. School Science Review, 88(325), 115-118.

Dahsah, C. & Coll,RR. K. (2008). Thaiwgradeq10 and 11 students' understanding of stoichiometry and related concepts. InternationalmJournalyof Sciencei and Mathematics Education, 6(3), 573-600.

Damayanti, E. T. (2017). Analisisi miskonsepsi peserta didik dengan menggunakan metode certainty of response index (CRI) termodifikasi pada konsep stoikiometri di SMA Negeri 5 Semarang (Skripsi). Universitas Islam Negeri Walisongo, Semarang.

Davidowitz, B., Chittleborough, G. & Murray, E. (2010). Student-generated submicro diagrams: a useful tool for teaching and learning chemical equations and stoichiometry. Chem. Educ. Res and Prac, 11(3), 154–164.

Frazer, M.J. & Servant, D. (1986). Aspects of stoichiometry titration calculations. Education in Chemistry, 23(2), 54-56.

Frazer, M.J. & Servant, D. (1987). Aspects of stoichiometry, where do students go wrong? Education in Chemistry, 24(3), 73-75.

Huddle, P.A. & Pillay, A.E. (1996). An in-depth study of misconceptions in stoichiometry and chemical equilibrium at a South African university. Journal of Research in Science Teaching, 33(1), 65-77.

Johnstone,QA.H. (1991). Why is science difficultstomlearn? Things are seldom what they seem. Journal of computersassistedplearning, 7 (2), 75-83.

Johnstone, A.H. (2006). Chemical education research in Glasgow in perspective. Chemistry Education Research and Practice. 7(2), 49 – 63.

Kementerian Pendidikan dan Kebudayaan Republik Indonesia. (2016). Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 24 Tahun 2016 tentang Kompetensi Inti dan Kompetensi Dasar Pelajaran pada Kurikulum 2013 pada Pendidikan Dasar dan Pendidikan Menengah. Jakarta: Kemendikbud. Diakses dari: https://bsnp-indonesia.org/2016/08/24/peraturan-menteri-pendidikan-dan-kebudayaan-nomor-24-tahun-2016/

Laugier, A. & Dumon, A. (2004). The equation of reaction: a cluster ofobstacles which are difficult to overcome. Chem. Educ. Res. Pract., 5(3), 327-342.

Metafisika,GK. (2014). Pengembangankmodelabuku teks pelajaran berbasis representasimkimiappada pokok bahasan kelarutan dan hasil kali kelarutan (Tesis). UniversitaskPendidikan Indonesia.

Mullford, D. R. & Robinson, W.R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. J. Chem. Educ., 79(7), 739-744.

Nakhleh, M.B., Lowry, K.A. & Mitchell, R. C. (1996). Narrowing thegap between concepts andalgorithms in freshman chemistry. J.Chem. Educ., 73(8), 758-762.

Niaz, M. & Robinson, W.R. (1992). Manipulation of logical structure ofchemistry problems and itseffect on student performance. J. Res. Sci.Teach., 29(3), 211-226.
Nurrenberg, S.C. & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference?. Journal of Chemical Education, 64(6), 508-510.

Papaphotis, G. & Tsaparlis, G. (2008). Conceptual versus algorithmic learning in high school chemistry: the case of basic quantum chemical concepts, Part 1, Statistical analysis of a quantitative study. Chem. Educ. Res. Pract., 9(4), 323-331.


Sanger, M.J. (2005). Evaluating students’ conceptual understanding of balanced equations and stoichiometric ratios using a particulate drawing. J. Chem. Educ., 82(1), 131-134.

Schmidt, H.J. (1990). Secondary school students’ strategies in stoichiometry. International Journal of Science Education, 12(4), 457-471.

Sidauruk, S. (2005). Miskonsepsi stoikiometri pada siswa SMA. Jurnal Penelitian dan Evaluasi Pendidikan, 7(2), 253-272.

Stamovlasis, D., Tsaparlis, G., Kamilatos ,C., Papaoikonomou, D. & Zarotiadou, E. (2004). Conceptual understanding versus algorithmic problem solving: a principal component analysis of a national examination. The Chemical Educator, 9 (2), 398-405.

Stamovlasis, D., Tsaparlis, G., Kamilatos, C., Papaoikonomou, D. & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: further evidence from a national chemistry examination. Chemistry Education Research and Practice, 6(2), 104-118.

Stamovlasis, D., Tsaparlis, G., Kamilatos, C., Papaoikonomou, D. & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: further evidence from a national chemistry examination. Chemistry Education Research and Practice, 6(2), 104-118.

Sunyono, S., Yuanita, L. &IIbrahim, M. (2003). Efektivitasymodelhpembelajaran berbasis multipel representasikldalam membangun model mental mahasiswa topikostoikiometri reaksi. JurnaloPendidikan Progresif, 3(1), 73-87.

Treagust,HD.F., Chittleborough, G. & Mamiala,PT. (2003). The role of submicroscopicgandgsymbolic representations in chemical explanations. Int. J.wSci.wEduc., 25(11), 1353–1368.

Treagust, D. F., & Chandrasegaran, A.L. (2009). The Efficacy of an Alternative InstructionaloProgrammewDesigned to Enhance Secondary Student's Competence in teh Triplet Relationship. In J. K. Gilbert & D. F. Treagust (Eds.). Multiple Representation in Chemical Education. Boston: Springer.

Wood, C. & Breyfogle, B. (2006). Interactive demonstrations for mole ratios and limiting reagents. Journal of Chemical Education, 83(5), 741-748.
Published
31-12-2019