View Article Online
View Journal | View Issue

OPEN ACCESS

Synthesis and Characterization of Samarium-Perylene MOFs for Photocatalytic Applications

Yulian Syahputri^{a,b}, Agustino Zulys^a*, Jarnuzi Gunlazuardi^a

Abstract. Hydrogen is a renewable and environmentally friendly energy source that has significant potential as a substitute for fossil fuels. The energy contained in hydrogen per unit mass is greater than the energy of fossil fuels and other fuels. One of the methods that can be used to produce hydrogen is photocatalytic water splitting using semiconductors. One of the semiconductor materials used for photocatalysis is metal organic frameworks (MOFs). MOFs have been extensively studied as photocatalysts for hydrogen gas production from water. This research aims to synthesize MOFs materials using samarium metal and perylene-3,4,9,10tetracarboxylate (PTC) ligand through a solvothermal method at varying temperatures (100, 120, and 170 °C) for 24 hours, then characterized using FTIR, XRD, DRS spectrophotometer and cyclic voltammetry, as well as its potential as a photocatalyst for hydrogen gas production. The synthesis results show that a temperature of 100 °C is the optimal reaction temperature. The FTIR analysis results show the presence of a bond between Sm and O at a wave number of 470-400 cm⁻¹. The XRD results indicate that MOFs (Sm-PTC) are crystals with an average crystal size of 43-58 nm. The band gap energy obtained ranges from 1.80-2.05 eV at a maximum wavelength of 689-605 nm. Cyclic voltammetry analysis shows that Sm-MOFs have the potential to be used as photocatalysts for hydrogen gas production.

Keywords: MOFs, Perylene, Photocatalyst, Samarium.

Correspondence and requests for materials should be addressed to Agustino Zulys (email: zulys@ui.ac.id)

^aDepartment of Chemistry, Mathematics and Natural Sciences Faculty, Universitas Indonesia, Depok, Indonesia

^bDepartment of Chemistry, Mathematics and Natural Sciences Faculty, Universitas Pakuan, Bogor, Indonesia

Introduction

Hydrogen is a renewable and environmentally friendly energy source that has significant potential as a substitute for fossil fuels. The energy contained in hydrogen per unit mass is greater than the energy of fossil fuels and other fuels [1]. One of the methods that can be used to produce hydrogen is photocatalytic water splitting using semiconductors. One of the semiconductor materials used for photocatalysis is metal organic frameworks (MOFs) [2]. MOFs have been extensively studied as photocatalysts for hydrogen gas production from water. MOFs have several characteristics such as large surface area, homogeneous active sites, and tunable functionality, allowing MOFs to be applied in various fields such as gas storage, sensors, catalysts, and other applications [3]. The selection of lanthanide metals is due to their weak sensitivity to f-f transition absorption, but the use of organic chromophores through the antenna ligand effect makes lanthanides more effective at absorbing visible light. The use of organic ligands such as perylene that serve as photofunctional linkers makes MOFs have characteristics as semiconductors [4]. The most commonly used synthesis method for MOFs is the solvothermal method, as it allows the system to be operated without the need for special equipment and enables relatively fast crystal growth with high crystallinity, phase purity, and surface area [5].

There are several studies on the synthesis of lanthanide metal-based MOFs, one of which is Zulys et al (2019) who successfully synthesized and characterized La-MOF with the ligand perylene-3,4,9,10-tetracarboxylate using a solvothermal method (varying molar ratios and reaction times). The results obtained show that La-MOF with a molar ratio of 0.33:0.25 has a surface area of 72.445 m²/g and a band gap value of 2.686 eV, while La-MOF with a molar ratio of 0.29:0.29 has a surface area of 102.565 m²/g and a band gap value of 2.732 eV [6]. Another research was conducted by Yulianiza et al (2021) who successfully synthesized Sm-MOF and La-MOF with the ligand crysophenine using a solvothermal method with DMF and water as solvents. The XRD results showed that La-MOF has higher crystallinity compared to Sm-MOF, with a band gap value of Sm-MOF at 2.12 eV and La-MOF at 2.07 eV, indicating that both MOFs can be applied as photocatalysts for water splitting

under visible light [7]. To the best of the author's knowledge, the potential of Sm-PTC MOFs as photocatalysts for hydrogen production under varying reaction temperatures (100, 120, and 170 °C) has not been extensively studied. The use of perylene ligand aims to enhance the visible light absorption of samarium metal. Based on the background described above, this study aims to synthesize MOFs materials using samarium metal and perylene-3,4,9,10-tetracarboxylate (PTC) ligand through a solvothermal method at varying temperatures (100, 120, and 170 °C) for 24 hours using a solvent DMF and water in ratio 4:1, then characterized using FTIR, XRD, and DRS spectrophotometer, as well as its potential as a photocatalyst for hydrogen gas production.

Experimental

This research was initiated by the synthesis of the PTC ligand from perylene 3,4,9,10-tetracarboxylic dianhydride (PTCDA) and NaOH, following the procedure previously reported in Ref. [6]. The synthesis of MOFs (Sm-PTC) was continued by reacting $Sm(NO_3)_3.6H_2O$ with the PTC ligand using the solvothermal method with temperature variations (100, 120, and 170 °C) for 24 hours, using a solvent of DMF and water in a 4:1 ratio, following the procedure previously reported in Ref [8].

A total of 0,29 mmol of PTC ligand and 0,33 mmol of Sm(NO₃)₃.6H₂O were dissolved in 16 ml of DMF and 4 ml water in beakers. Next, the solutions were stirred using a magnetic stirrer for 1 hour at room temperature and pressure. The resulting solution are orange in color, then transfer to a teflonautoclave to be heated at the reaction temperatures (100, 120, and 170°C) for a reaction time of 24 hours. After the reaction time is completed, cool down, then filter and wash with distilled water and DMF, and then dry in an oven at 60°C overnight. The obtained product is then weighed, ground, and placed in a vial. The resulting complexes were characterized by fourier transform infrared spectrophotometer (FTIR), DRS spectrophotometer, X-Ray Diffraction (XRD), and cyclic voltammetry (CV).

Result and Discussion

PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride) is made into its derivative, Na-PTC (tetrasodium; perylene-3,4,9,10-tetracarboxylic),

through a hydrolysis reaction of PTCDA. PTCDA has properties that are insoluble in water at neutral pH, so hydrolysis is necessary for it to dissolve in water and to facilitate the reaction with Sm3+ metal ions, forming Sm-MOFs [9]. The color change from red PTCDA to yellow Na-PTC indicates that Na-PTC has been successfully formed. The yield of Na-PTC obtained is 90.47%. The FTIR results of PTCDA and Na-PTC can be seen in Figure 1.

The FTIR analysis results for PTCDA and Na4PTC (Figure 1) indicate that at the wavenumber 1758 cm-1, identified as the stretching vibration of the C=O anhydride functional group from the closed chain (cyclic) in PTCDA, no longer appears in the FTIR spectrum of Na4PTC. The FTIR spectrum of Na4PTC shows absorptions at wavenumbers 1580 and 1402 cm-1 identified as the stretching vibrations of the (-COO-) group, confirming the presence of the conjugated carboxylate sodium group in the perylene ring [10]. The wavenumber 1026 cm-1 shows the stretching vibration (C-O) from the cyclic anhydride PTCDA [8]. In the Na4PTC spectrum, there is an absorption appearing at the wavenumber 3502 cm-1 identified as the broad stretching vibration (O-H), This is suspected to be due to the presence of an anhydride group from PTCDA that has been opened; however, part of it does not bind to Na+ cations but instead forms a carboxylate group (-COOH) that possibly originates from the washing of the material with ethanol to neutral pH [11]. In the FTIR spectrum of PTCDA and Na4PTC, an absorption appears at wavenumbers 799 and 798 cm-1, which is identified as the stretching vibration (C-H) of aromatic [12].

Optimization of the reaction temperature in the synthesis of Sm-MOFs (Sm-PTC) was

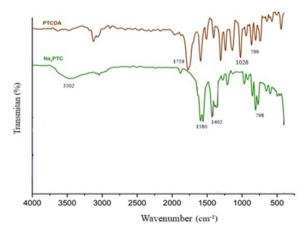
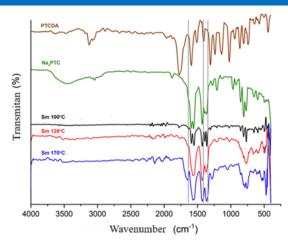



Figure 1. FTIR Spectrum of PTCDA and Na₄PTC

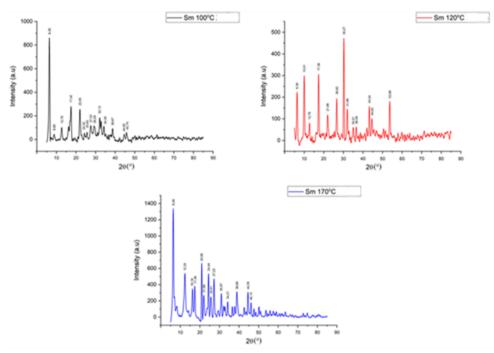
Figure 2. FTIR Spectrum of Sm-PTC on variations in reaction temperature

performed by varying the reaction temperatures of 100, 120, and 170°C for 24 hours, followed by characterization using FTIR, XRD, and UV-Vis DRS spectroscopy. The FTIR analysis results are shown in Figure 2.

The C=O carboxylate stretching vibration at wavenumbers 1725-1700 cm⁻¹ does not appear in the Sm-PTC spectrum. This indicates that there has been a deformation of the ligand structure, marked by the emergence of asymmetric and symmetric stretching vibrations at wavenumbers 1551 and 1427 cm⁻¹ for Sm-PTC 100 °C, 1566 and 1419 cm⁻¹ for Sm-PTC 120oC, and 1566 and 1417 cm⁻¹ for Sm-PTC 170oC [13-14]. In the FTIR spectrum of Sm-PTC, the absorption appearing at wavenumbers 777, 776, 765 cm⁻¹ indicates aromatic alkene (C-H) stretching vibrations [12]. The absorption appearing at wavenumbers 469, 452, 411 cm-1 is indicated as (Sm-O) vibrations, confirming the existence of coordination bonds between lanthanide metal ions and oxygen in the range of 470-400 cm⁻¹ [9]. The color change from yellow Na-PTC to MOFs (Sm-PTC) and the % yield obtained can be seen in Table 1. This color change serves as a visual indication of the formation of a specific MOF structure [15].

XRD characterization was performed to observe the crystallinity of MOFs. Metal Organic Frameworks are known as compounds that have high crystallinity. The crystallinity of the material is very important to know because it is closely related

Table 1. Results of wavenumber shift of ligands and La complex compounds


MOFs	Temperature (°C)	Color	% Yield
Sm-PTC	100 120	Orange Red	84.98 82.86
	170	Red	80.73

to photocatalytic activity [9]. The XRD results of Sm-PTC at varying temperatures can be seen in Figure 3 and Table 2.

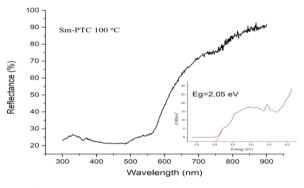
Based on Figure 3, the material shows no broad absorption peak, indicating its well-defined crystalline structure [14]. The sharpest peaks in the MOFs (Sm-PTC) spectrum are in the 2θ region around 5° to 15°, specifically at 6.36° and 6.39°. This is consistent with the XRD patterns of most MOFs consisting of lanthanide metals and other organic ligands in previous studies [14, 16-17]. The analysis of MOFs with

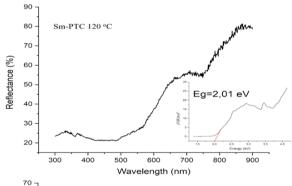
XRD can also determine the degree of crystallinity and crystal size. The degree of crystallinity is obtained by comparing the area of the main diffraction peak with the total area of all peaks, while the crystal size is obtained using the Debye-Scherer equation. The results of the degree of crystallinity and crystal size of Sm-PTC at variations of temperature can be seen in Table 3.

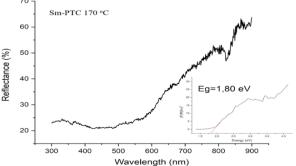
The crystallinity of MOFs is known to be strongly influenced by reaction parameters such as temperature and reaction time, which can favor the thermodynamically preferred crystalline phase at

Figure 3. Diffraction pattern of Sm-PTC at varying reaction temperatures (100; 120; 170 ° C) during a reaction time of 24 hours

Table 2. XRD results of Sm-PTC at 100°C (a); 120°C (b); 170°C (c) after a reaction time of 24 hours


2θ (°)	Intensity (a.u)	2θ (°)	Intensity (a.u)	2θ (°)	Intensity (a.u)
6,36	861,68	6,39	224,43	6,39	1337,07
8,80	45,73	10,01	299,53	12,33	539,54
12,70	102,05	12,76	81,13	16,19	349,17
17,42	280,28	17,36	306,96	17,36	382,47
22,05	255,21	21,99	118,77	20,95	665,11
24,32	53,16	26,62	194,38	21,99	270,40
25,63	60,90	30,27	473,03	24,44	535,49
27,53	119,07	31,99	145,27	25,61	249,25
29,29	116,28	35,01	60,71	27,23	473,83
32,12	184,97	36,58	63,58	30,97	292,91
34,30	112,26	43,24	157,59	34,21	189,84
38,67	92,15	44,62	101,22	38,89	312,26
44,62	45,42	53,69	181,22	44,55	307,76
45,74	59,97			46,15	180,39


Table 3. Crystal size and degree of crystallinity of Sm-PTC at varying reaction temperatures

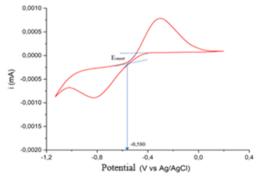

Parameter		Sm-PTC		
Parameter	100 °C	120 °C	170 °C	
Average Crystal size (nm)	46.07	43.03	58.89	
% Crystallinity	99.53	99.27	99.80	

elevated temperatures, whereas lower temperatures or shorter durations tend to yield amorphous products. Furthermore, the rigidity of the organic linker plays a crucial role: rigid ligands generally enhance MOF stability and crystallinity [18-20].

Diffuse reflectance spectroscopy (DRS) is one of the spectroscopic techniques used to analyze a solid material by utilizing the reflectivity of the sample against infrared or UV-visible light. The Kubelka-Munk equation and Tauc plot are used in advanced analysis to determine the band gap energy value of a material. The band gap en-

Figure 4. Reflectance spectrum and energy gap curve of Sm-PTC at varying temperatures

ergy refers to the distance between the valence band and the conduction band. The band gap energy is an important parameter to consider for a semiconductor material that will be applied as a photocatalyst, as it affects the activity of the semiconductor used as a photocatalyst [21].


The band gap energy of MOFs Sm-PTC was obtained by correlating the E values (eV) against (FR)2 as shown in Figure 4. The band gap energy obtained for MOFs Sm-PTC at varying temperatures (100; 120; 170°C) were 2.05 eV (λ maks = 605 nm); 2.01 eV (λ maks = 617 nm); and 1.80 eV (λ maks = 689 nm), respectively. The results of the band gap energy obtained are still within the semiconductor range for photocatalysis applications under visible light, namely in the range of 3.0<E<1.6 [22].

The cyclic voltammetry (CV) results of Sm-PTC under optimal conditions are shown in Figure 5, with an onset oxidation potential at -0.580 V vs Ag/AgCl (-0.370 V vs NHE). This potential corresponds to the valence band (VB) level of the Sm-PTC MOF. Given the obtained band gap energy of 2.06 eV, the conduction band (CB) level is estimated to be -2.43 V vs NHE. Since the reduction potential of Sm-PTC is more negative than the H $^+$ /H $_2$ standard reduction potential (0.00 V vs NHE), it can be concluded that Sm-PTC meets the thermodynamic requirement for H $^+$ /H $_2$ reduction.

Based on the results of FTIR, XRD, and UV-Vis DRS spectrophotometry analyses, it can be concluded that the optimum reaction temperature for MOFs Sm-PTC is at 100°C for a reaction time of 24 hours, and that MOFs Sm-PTC have the potential to be used as a photocatalyst for hydrogen gas production.

Conclusion

The MOFs from Sm metal and PTC ligand has been successfully synthesized which can be seen from the characterization data. The synthesis

Figure 5. Sm-PTC voltammogram at optimum temperature reaction (100°C)

results show that a temperature of 100 °C is the optimal reaction temperature. The FTIR analysis results show the presence of a bond between Sm and O at a wave number of 470-400 cm-1. The XRD results indicate that MOFs (Sm-PTC) are crystals with an average crystal size of 43-58 nm. The band gap energy obtained ranges from 1.80-2.05 eV at a maximum wavelength of 689-605 nm. Based on the cyclic voltammetry results, Sm-MOFs have the potential to be used as photocatalysts for hydrogen gas production.

Author Contributions

All authors contributed to the researchand writing in this article. Agustino Zulys: validation, supervision, methodology, conceptualization, data curation, and review. Yulian Syahputri: writing-original draft, visualization, investigation, editing, and formal analysis. Jarnuzi Gunlazuardi: validation, supervision, methodology, data curation and review.

References

- [1] Mikaeili, F., Tessa, G., and Pelagia, I.G. 2022. Photochemical Water Splitting via Transition Metal Oxides. Catalysts MDPI, 12, 1303, p.1-14.
- [2] Qi, Y. J., Zhang, X., Feng, Y., Wang, H., and Yao, J. 2018. Modified Metal-Organic Frameworks as Photocatalysts. Applied Catalysis B: Environmental. 231:317-242.
- [3] Shen, L., Liang, R., Luo, M., Jing, F., and Wu, L. 2015. Electronic Effects of Ligand Substitution on Metal-Organic Framework Photocatalyst: The Case Study of UiO-66. Physical Chemistry Chemical Physics: PCCP. 17: 117-121.
- [4] Wen, M., Mori, K., Kuwahara, Y., An, T., and Yamashita, H. 2017. Design and Architecture of Metal-Organic Frameworks for Visible Light Enhanced Hydrogen Production. Applied Catalysis B: Environmental. 218: 555-569.
- [5] Ma, Mingyan. 2011. Preparation and Characterization of Metal-Organic Frameworks for Biological Applications. Dissertation. Ruhr-University Bochum.
- [6] Zulys, A., A'yun, Q., and Gunlazuardi, J. 2020. Synthesis of metal organic frameworks based

- on lanthanum metal and perylene ligand as photocatalyst for hydrogen gas production. AIP Conference Proceedings 2243, 020034 (2020), p.1-7. https://doi.org/10.1063/5.0005000.
- [7] Yulianiza, R., Zulys, A., and Gunlazuardi, J. 2021. Synthesis and Characterization of Samarium or Lanthanum-Based Metal-Organic Frameworks with Crysophenine Ligand. AECon, Purwokerto, Indonesia. http://dx.doi.org/10.4108/eai.19-12-2020.2309175.
- [8] Christina, L.C., Gunlazuardi, J, and Zulys, A. 2019. Synthesis and characterization of lanthanide metal-organic framework with perylene 3,4,9,10 -tetracarboxylate ligand. IOP Conf. Series: Materials Science and Engineering 902, 012046, p.1-10. doi:10.1088/1757-899X/902/1/012046. International Journal of Hydrogen Energy, Volume 44, Issue 48, p.26444-26458. https://doi.org/10.1016/j.ijhydene.2019.08.116.
- [9] Zulys, A., Asrianti, D., and Gunlazuardi, J. 2020. Synthesis and characterization of metal organic frameworks based on nickel and perylene dyes as water splitting photocatalyst. AIP Conference Proceedings, 2243, 020035.
- [10] Wang, C., Zhihua, W., Fubo, G, and Guangsheng, G. 2011. Three novel lanthanide MOFs constructed from 1,3-benzenedicarboxylic acid and 1,10-phenanthroline: Hydrothermal synthesis, crystal structure and thermal properties. Journal of Molecular Structure 1004 (2011), p. 39–44. doi:10.1016/j.molstruc.2011.07.014.
- [11] Fathurrahman, M., Zulys, A., and Gunlazuardi, J. 2023. Fotodegradasi Metilen Biru oleh Metal Organic Framework (MOF) Fe-PTC dengan Penambahan H2O2 dan Dioptimasi Menggunakan Desain Box Behnken. Jurnal Kartika Kimia, Vol. 6 (2), p. 131-144. DOI: https://doi.org/10.26874/jkk.v6i2.228.
- [12] Ediati, R., Kahardina, M., dan Hartanto., D. 2016. Pengaruh Perbandingan Pelarut Etanol dan Dimetilformamida pada Sintesis Metal Organik Framework HKUST-1. Akta Kimindo, Vol. 1 (1), hal. 25-33.
- [13] Lyszczek, R., Mazur, L., Ostasz, A., Bartyzel, A., and Gluchowska, H. 2017. Lanthanide metal– organic frameworks: Structural, thermal and sorption properties. Adsorption Science and Technology, Vol. 35(7–8), p.677–683. doi: 10.1177/0263617417704310.
- [14] Wei, F., Zheng, T., Ren, Q., Chen, H., Peng, J.,

Jurnal Ilmu Kimia dan Terapan

ALKIIVIIA

ARTICLES

Ma, Y., Liu, Z., Liang, Z., and Chen, D. 2022. Preparation of Metal-Organic Frameworks by Microwave-assisted Ball Milling for The of CR from Wastewater. Green Processing and Synthesis, 11, p.595–603. https://doi.org/10.1515/gps-2022-0060.

- [15] Matthes, P.R., Schonfeld, F., Zottnick, S.H., and Buschbaum, K.M. 2015. Post-Synthetic Shaping of Porosity and Crystal Structure of Ln-Bipy-MOFs by Thermal Treatment. Molecules, 20: 12125-12153. doi:10.3390/ molecules200712125.
- [16] Ma, Y., Zhu, M., Zhang, Y., Gao, E., and Wu, S. 2022. A multiemissive lanthanide metalorganic framework for selective detection of L-tryptophan. Inorganics Chimica Acta 537, 120928. Elsevier. https://doi.org/10.1016/ j.ica.2022.120928.
- [17] Sun, X. J., Qi, Y., Fengming, Z., Jnzhi, W., and Ping, Y. 2016. A dye-like Ligand Bades Metal-Organic Framework for Efficient Photocatalytic Hydrogen Production from Aqueous Solution. Catalysis, Science & Technology. Royal Society of Chemistry, 6: 3840-3844.
- [18] Aljammal, N., Jabbour, C., Chaemchuen, S., Juzsakova, T., and Verpoort, F. 2019. Flexibility in Metal-Organic Frameworks: A Basic Understanding. Catalysts, Vol. 9, Issue 6, 512: 1-31. https://doi.org/10.3390/catal9060512.
- [19] Shaw, E. V., Chester, A. M., Robertson, G. P., Blas, C. C., and Bennett, T. D. 2024. Synthetic and Analytical Considerations for The Preparation of Amorphous Metal-Organic Frameworks. Royal Society of Chemistry, 15: 10689-10712. DOI: 10.1039/d4sc01433b.
- [20] Lv, X. L., Yuan, S., Xie, L. H., Darke, H. F., Chen, Y., He, T., Dong, C., Wang, B., Zhang, Y. Z., Li, J. R., and Zhou, H. C. 2019. Ligand Rigidification for Enchancing the Stability of Metal-Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 10283–10293. DOI: 10.1021/ jacs.9b02947.
- [21] Wulandari, D.A., Zulys, A., and Kusrini, E. 2019. Samarium Complexes from 2,6-Naphtalenedicarboxylate: Synthesis, Photocatalytic Properties and Degradation of Methylene Blue. IOP Conf. Series: Materials Science and Engineering 546 (2019) 042050. doi:10.1088/1757-899X/546/4/042050.
- [22] Guo, X., Liu, L., Xiao, Y., Qi, Y., Duan, C., and

Zhang, F. 2021. Band Gap Engineering of Metal-Organic Frameworks for Solar Fuel Productions. Coordination Chemistry Reviews 435 (2021) 213785. https://doi.org/10.1016/j.ccr.2021.213785.