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Abstract 10 

Some endophytic bacteria are known to have hydrolytic activity by producing hydrolase 11 

enzymes. Endophytic bacteria can be found in plant tissue. Exploration of endophytic 12 

cellulolytic bacteria in water apple (Syzygium aqueum) fruit has not been widely carried out, 13 

so this research is the first to be conducted. This study aimed to isolate, screen, and identify 14 

endophytic bacteria from water apple fruit that could produce cellulase enzymes. The research 15 

began with bacterial isolation. Then, cellulolytic screening was carried out by inoculating the 16 

isolates into a differential medium containing cellulose, Bushnell-Haas agar (BHA). The 17 

screening results were characterized and identified through 16S rDNA gene sequence analysis. 18 

The isolation results indicated that seven bacterial isolates were screened for cellulolytic 19 

activity by cultivating them on BHA medium. The screening revealed that one isolate encode 20 

CSZA2 had cellulolytic activity with a cellulolytic index of 0.87. Biochemical characterization 21 

and molecular identification of the CSZA2 isolate showed a 99.93% similarity to the 22 

Pseudomonas putida RTI2, a bacterium known for producing cellulase enzymes. The discovery 23 

of bacterial cellulolytic activity can be developed for biomass degradation, bioethanol 24 

production, and agricultural biotechnology. 25 

Keywords: Bacteria; Cellulolytic; Endophytic; Fruit; Syzygium aqueum. 26 

 27 

Introduction 28 

Bacteria that live in plant tissue are called endophytic bacteria. These bacteria live in 29 

plant tissue without causing negative impacts on their host plants [1]. The endophytic bacterial 30 

community is specific regarding its nutritional needs and can vary in type between bacteria that 31 

live on one plant and another. This is because endophytic bacteria have adapted to the chemical 32 

conditions of the metabolites of the plant. Exploration of endophytic bacteria for the production 33 

of bioactive compounds in the form of extracellular and intracellular metabolites is known to 34 
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be quite efficient, so it is often done using many different types of plants and exploring different 35 

abilities [2, 3]. 36 

Some endophytic bacteria are known to be able to produce hydrolytic enzymes. 37 

Hydrolytic bacterial enzymes or hydrolases that are commonly produced by endophytic 38 

bacteria are generally cellulases, pectinase, protease, amylase, lipase, and xylanase. The 39 

production of hydrolase enzymes is influenced by substrate conditions where the bacteria 40 

originate [4, 5]. In general, it can be explained that hydrolase enzymes have important functions 41 

in agriculture or industry. 42 

Cellulolytic enzymes are divided into several groups based on their structure, shape, 43 

and activity. Types of cellulolytic enzymes include Cellulose Binding Module (CBM), endo-44 

β-1,4-gluconase, exo-β-1,4-gluconase, and β-1,4-glucosidase [6]. In industry, cellulase 45 

enzymes are used to process agricultural by-products containing a lot of cellulose to produce 46 

glucose which is often used in bioethanol production. Bioethanol is a potential energy source 47 

that can produce fossil fuels [4, 7]. 48 

Syzygium aqueum known as water apple is a plant from the Southeast Asian region. 49 

Water apple fruit has benefits for increasing immunity and body energy because of its 50 

nutritional content [8, 9]. This fruit contains approximately 4.5 g carbohydrates, 0.7 g protein, 51 

0.2 g fat, 1.9 g fibers per 100 g. Several secondary metabolites, antioxidants and vitamins also 52 

constitute these fruit nutrient, such as phenolic contents ranging from 28.8 - 30.7 mg, 53 

flavonoids ranging from 62.03 - 62.07 µg, β-carotene, ascorbic acid, thiamin, and 54 

riboflavin[10], [11]. The nutrients in this fruit are suitable for the living environment of various 55 

microbes, one of which is bacteria.  56 

Previous research on endophytic bacteria has only been reported on the stems of S. 57 

aqueum plants, but never on the fruit. Main focus of the previous study is to isolate endophytic 58 

bacteria that have antagonistic ability against pathogenic fungi, which is different from this 59 

research purpose [12]. Another study about their endophytic microbes also isolated endophytic 60 

fungi from the bark, root bark, and leaves of S. aqueum [13] . 61 

The insufficient research on endophytic bacteria derived from water apple fruit, 62 

particularly regarding cellulase production, is the main reason for this study. The cellulolytic 63 

activity of these bacteria, which can also be applied in industry and the decomposition of 64 

agricultural by-products, may lead to valuable discoveries. Therefore, this research aimed to 65 

isolate and identify endophytic cellulolytic bacteria from water apple fruit (S. aqueum). 66 

 67 
 68 
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Materials and methods 69 

This type of research is observational research. The results of this study were analyzed 70 

descriptively by explaining the tabulated data. This research was conducted from August to 71 

November 2024. The isolation and screening stages of cellulolytic potential were carried out 72 

in the microbiology laboratory, while the DNA isolation, PCR, and electrophoresis stages were 73 

carried out in the molecular biology laboratory of the Faculty of Health Sciences, Maarif 74 

Hasyim Latif University. 75 

 76 

Materials 77 

The tools used in this research include Petri dishes, Erlenmeyer flasks, Test tubes, 78 

inoculating loop needles, micropipettes, cotton swabs, mortar, pestle, scalpel knife, Biosafety 79 

Cabinet 1300 Series A2 (Thermo Scientific), Incubator (Memmert IN110), PCR (Bio-Rad), 80 

Waterbath (Benchmark Scientific, USA), centrifuge (Thermo Scientific), Genesys 10S UV-81 

Vis Spectrophotometer (Thermo Scientific), bluegel electrophoresis. The sample used in this 82 

research are fruits of Syzygium aqueum plant. Material needed include deionized water, 2% 83 

sodium hypochlorite, 70% ethanol, nutrient agar (Merck), bacto agar powder (Himedia), 84 

K2HPO4, KH2PO4, FeCl3.6H2O, NH4NO3, MgSO4.7H2O, CaCl2, carboxymethyl cellulose 85 

(CMC) (Himedia), Congo red, tripton water (Merck), peptone water (Merck), MR-VP medium 86 

(Merck), Simmon’s citrate medium (Merck), triptic sugar iron agar (Merck), lysine iron agar 87 

(Merck), glucose, sucrose, lactose, maltose, ddH2O, Wizard Genomic DNA Purification Kit 88 

Promega, Green Gotaq PCR master mix Promega, 16S rDNA primers 27F (aga gtt tga tcc tgg 89 

ctc ag), 1492R (ggt tac ctt gtt acg act t) (IDT Oligo), and agarose gel (Mini-Sub® Cell GT Cell 90 

Tank and Lid).  91 

 92 

Methods 93 

1. Isolation of Endophytic Bacteria of S. aqueum Fruit 94 

Isolation of endophytic bacteria from S. aqueum fruit began by sterilizing the fruit 95 

surface. The fruit used was first washed with sterile deionized water. The fruit was then soaked 96 

in 2% sodium hypochlorite solution for 5 minutes and then rinsed with 70% ethanol for 30 97 

seconds. The fruit was then rinsed with sterile deionized water and allowed to dry before being 98 

processed. The fruit dried in a Beaker glass contains Whatman filter paper no. 1, until the rinsed 99 

water drained into the paper, approximately 15 minutes. Dried fruit was then processed by 100 

cutting it into small pieces first and weighing 1 g. The fruit was then suspended with 9 ml of 101 
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phosphate buffer and then 0.1 mL was taken and spread on nutrient agar (NA) media and 102 

repeated 5 times [12, 13]. 103 

 104 
2. Screening of Cellulolytic Bacteria Isolate 105 

The cellulolytic screening was carried out using Bushnell-Haas agar (BHA) medium 106 

prepared with ingredients in the form of (g/L) agar, K2HPO4 1; KH2PO4 1; FeCl3.6H2O 0.05; 107 

NH4NO3 1; MgSO4.7H2O 0.2; and CaCl2 0.02 then added 1% carboxymethyl cellulose (CMC) 108 

[16]. Bacteria were inoculated on BHA medium containing 1% CMC using a streak technique 109 

to form a line. Furthermore, the isolate results were incubated for 24 hours at 32oC. 110 

Observations were made on the media by looking at the visible clear zone. Congo red reagent 111 

was added to the media to clarify the clear zone produced by bacteria so that it was easy to 112 

observe. 113 

Observation was continued with a quantitative screening test to determine the 114 

cellulolytic activity capability of bacteria. The test was conducted using the spot in lawn 115 

method, by inoculating cellulolytic bacterial isolates on BHA + cellulose media by spotting at 116 

one point only. The medium were then incubated at 32oC for 24 hours. Congo red reagent was 117 

added to media to clarify the clear zone around the colony of bacteria. Cellulolytic index 118 

obtained by calculating with the formula. 119 

𝐶𝐼 =
𝐶𝑍 𝐶𝐷

𝐶𝐷

 CI : Cellulolytic index (mm) 

CZ : Clear zone (mm) 

CD : Colony diameters (mm) 

 120 

The category of cellulolytic index determines their capabilities to degrade cellulose. CI 121 

≤ 1 was low cellulolytic activity, 1 < CI ≤ 2 was medium cellulolytic activity, CI > 2 was high 122 

cellulolytic activity [17] 123 

 124 
3. Morphological and Biochemical Characterization 125 

All cellulolytic bacteria that were successfully isolated were characterized by their 126 

colony and cell morphology. Endophytic bacteria that were known to have cellulolytic activity 127 

were characterized biochemically by growing them on test media, including IMVIC, TSIA, 128 

Lysine and sugar fermentation. The results were observed 24 hours after inoculation 129 

 130 
4. Identification of Cellulolytic Bacteria Isolate 131 

All potential bacteria were identified molecularly using 16S rDNA primers 27F (aga 132 

gtt tga tcc tgg ctc ag) and 1492R (ggt tac ctt gtt acg act t). Detection of cellulolytic bacterial 133 

isolate DNA began with the extraction of total DNA from bacterial isolates that had been 134 
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prepared on nutrient agar slants, which were then taken in 2 full loops suspended in 200 µL of 135 

ddH2O, then vortexed. The suspension was then heated at 95 °C for 20 minutes using a water 136 

bath (Benchmark Scientific, USA). After that, the culture suspension was centrifuged at 10,000 137 

rpm for 5 minutes at 4 °C. 180 µL of supernatant was separated from the pellet to be used as a 138 

DNA template in the PCR reaction [18]. 139 

DNA concentration and purity were measured by observing the absorbance value with 140 

the help of Genesys 10S UV-Vis Spectrophotometer. DNA template amounting to 10µL was 141 

added with sterile distilled water until the volume reached 1000 µL. The DNA was slowly 142 

mixed with the help of a micropipette. The diluted DNA was then inserted into a cuvette, and 143 

its absorbance was measured at a spectrophotometer wavelength of 260 nm. The absorbance 144 

was measured again using a wavelength of 280 nm [19]. DNA concentration was calculated 145 

using the following equation: 146 

DNA Concentration = Å260×50×dilution factor ……………………………….(1) 147 

DNA purity is further measured using the following equation: 148 

DNA Purity = Å260/Å280 ………………………………………………………(2) 149 

Good DNA purity is indicated when the absorbance ratio shows a figure of 1.8 – 2 and 150 

the concentration is above 100 µg/mL. The PCR reaction was made with a composition of 50 151 

µL containing 25 µL Gotaq green, 5 µL primers 27F and 1492R, 5 µL DNA template and 10 152 

µL ddH2O. Then inserted into the PCR machine and the stages were arranged, namely pre-153 

denaturation at 94°C for 5 minutes, denaturation at 94°C for 30 seconds, annealing at 60°C for 154 

30 seconds, extension at 72°C for 1.5 minutes, and final extension at 72°C for 10 minutes. The 155 

results of the amplification were visualized using 0.8% (w/v) agarose gel electrophoresis [18]. 156 

The amplicons were then sequenced at 1st BASE DNA Sequencing Malaysia. The 157 

sequencing results were assembled into contigs using Bioedit software version 7.2. The 16S 158 

rDNA sequences obtained were compared with the database available at NCBI using the 159 

BLAST search tool, which can be accessed via the link https://blast.ncbi.nlm.nih.gov, and 160 

phylogenetic tree analysis using MEGA software version 11. Pylogenetic tree generated 161 

through Neighbor-Joining method and 1000 replicate of boot-straps. 162 

 163 

Results and Discussion 164 

Result 165 

The results of the bacterial isolation process that has been carried out obtained 7 166 

bacterial colonies with various characteristics. The characteristics of the 7 bacterial colonies 167 
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are presented in Table 1. Seven bacterial colonies come from different plates with the same 168 

media. Based on the table, 3 Gram-positive bacteria and 4 bacteria with Gram-negative were 169 

obtained. 170 

 171 

 172 

 173 

 174 

 175 

 176 
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 178 

 179 
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 198 

 199 

The seven bacterial isolates that have been selected based on their character differences 200 

were finally screened using Bushnell-Haas hydrolytic media. Based on the results of the 201 
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cellulase activity screening test, it was found that there was only one type of bacterial isolate, 202 

namely CSZA2 (Figure 1), which showed cellulolytic activity. Bacterial cellulolytic activity is 203 

known from the appearance of a clear zone around the colony, after the administration of congo 204 

red reagent in a medium containing cellulose (CMC) (Figure 2). The cellulolytic index (CI) of 205 

the CSZA2 isolate was 0.87. These results are below 1, so the cellulolytic activity of CSZA2 206 

bacteria is included in the low activity category. 207 

 208 

A     B 209 

Figure 1. [A] CSZA2 colony morphology from bacterial isolation. [B] CSZA2 colony 210 

morphology from the purification process.  211 

 212 

A     B 213 

Figure 2. [A] Qualitative screening result of CSZA2 cellulolytic activity. [B] Quantitative 214 

screening result of CSZA2 cellulolytic activity using spot inoculation methods 215 

 216 

Biochemical reaction tests conducted on the CSZA2 bacterial isolate produced the 217 

characteristics presented in Table 2. Catalase, Indole, MR, VP, and sugar fermentation tests 218 

(glucose, lactose, sucrose, maltose) yielded negative results. Positive results were obtained in 219 

the motility test, lysine test, and citrate test. The TSIA test results were alkaline slant and butt, 220 

and negative for both gas production and H2S. The TSIA test describes that no sugar were 221 
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fermented. The CSZA2 isolate was then prepared on NA slant media for molecular 222 

identification. 223 

 224 

Table 2. Biochemical characterization of bacterial isolate CSZA2 225 

Test 
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Isolate 

CSZA2 
(─) (─) (─) (+) (+) (+) (─) 

Slant Ak 

Butt Ak 

Gas (─) 

H2S (─) 

(─) (─) (─) (─) 

Notes: (+): positive results; (-): negative results; Ak: Alkaline. 226 

 227 

The concentration of CSZA2 isolate DNA was 50 µg/mL, while the purity of DNA was 228 

0.5. These results indicate that the DNA template is suspected to be contaminated with protein, 229 

but we decided to continue the identification process using the DNA template sample. The 230 

results of the amplification were visualized using 0.8% agarose gel electrophoresis. The 231 

presence of DNA bands with a molecular weight of ± 1500 bp can be seen in Figure 3. 232 

indicating that 16S rDNA was amplified. A phylogeny tree was created to describe the 233 

relationship of isolates suspected of having the potential to produce cellulase enzymes. The 234 

identification results based on 16S rDNA showed that the CSZA2 isolate was Pseudomonas 235 

putida RT12 with a similarity of 99.93% (Figure 4). 236 

 237 

Figure 3. PCR Analysis Results of CSZA2 Isolate. 1kb: Marker; 9: CSZA2 Isolate 238 

Acc
ep

te
d 

M
an

us
cr

ip
t 



 239 

Figure 4. Phylogeny Tree of Bacterial Species Potentially Producing Cellulase Enzymes 240 

Based on 16S rDNA Sequence Data Neighbor Joining Bootstrap Algorithm 1000. 241 

Discussion 242 

Based on the results obtained, it is known that from 5 repetitions of isolation carried 243 

out, only 7 different bacterial colonies were obtained (Table 1). This number is not too much. 244 

Previous studies showed that endophytic bacteria in the upper body tissue of plants are not 245 

numerous. This result was also obtained in a study to isolate endophytic bacteria in rambutan 246 

fruit (Nephelium lappaceum), which obtained 9 isolates. Other studies isolating bacteria from 247 

avocado and black grapes only obtained 3 isolates each [12, 16, 17]. 248 

Several things, including the level of fruit ripeness, fruit health, weather, and season, 249 

can influence the number of bacteria in the fruit [22]. Bacteria in the fruit can come from the 250 

carposphere or the air around the fruit and enter through the pores in the fruit. This number is 251 
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not too much compared to bacteria from the soil or rhizosphere due to differences in nutrition. 252 

Some of the bacteria found in the fruit also come from root bacteria that have cellulolytic 253 

enzymatic reactions that are used to enter other tissues of the plant including the fruit [16, 19]. 254 

The morphological diversity of isolated bacterial isolates (Table 1) can be influenced 255 

by the environmental conditions of the bacteria's origin. In addition, morphogenetics is 256 

determined by gene expression from bacterial species. Its shape can affect important 257 

physiological functions such as nutrient acquisition, motility, interaction and resistance to 258 

pressure [24]. Endophytic bacteria can be Gram negative or Gram positive [25]. 259 

The CSZA2 bacterial isolate that has been identified as P. putida generally has a milky 260 

white, round, sticky, moist, opaque colony morphology (Figure 1). Meanwhile, the cell 261 

morphology is rod-shaped and Gram-negative [26]. Biochemical test of CSZA2 isolate shows 262 

that most carbohydrates fermentation tests have negative results (Table 2). These results are 263 

similar to P. putida strain ST3 characteristics, which obtaining negative results for rhamnose, 264 

N-acetyl-glucosamine, D-sucrose, mannitol, maltose, L-fucose, sorbitol, and many other 265 

sugars [27]. 266 

Based on the screening results (Figure 2), one bacteria was found to have hydrolytic 267 

activity. The hydrolytic activity found was cellulolytic. This is because the bacteria produce 268 

cellulase enzymes, however, the results found that the CSZA2 isolate has low cellulolytic 269 

activity. Bacteria usually can produce cellulase enzymes if cellulose is available in the 270 

substrate. Plants are the main source of cellulose. Generally, fruit contains 0.4 to 4.2% of plant 271 

cellulose, which is relatively low compared to leaves that have 15-20% cellulose and tree 272 

branches that contain 40-50% cellulose. This might affect the cellulase production of CSZA2 273 

[6].  274 

The low cellulolytic activity of the CSZA2 isolate is expected because endophytic 275 

bacteria tend to produce plant cell wall-degrading enzymes in small amounts to move from one 276 

tissue to another in a plant. These cell wall-degrading enzymes include cellulase and pectinase. 277 

If the degrading enzyme is secreted in large quantities, the plant will provide an immune 278 

response, because the plant may consider this bacteria as a pathogen. This will endanger the 279 

survival of endophytic bacteria [28]. 280 

Previous research found that the genus Pseudomonas has the highest CI index of 1.3. 281 

Each type of isolate may have different cellulolytic activity when screened on CMC agar 282 

media. Cellulolytic bacteria may have a higher CI index value if they grow in their original 283 

habitat compared to when inoculated on CMC agar media [17].  284 
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The journey of endophytic bacteria throughout plant tissues is due to high motility and 285 

enzymatic ability, namely the production of cellulase to help degrade cellulose in plant tissues 286 

[29]. Secretion of bacterial cellulase usually requires the concerted action of c-di-GMP-287 

responsive inner membrane synthase (BcsA), membrane-anchored accessory protein (BcsB), 288 

and several additional Bcs components. Cellulase breaks down glucosidic bonds using acid-289 

based catalysis. Two catalytic residues of the enzyme carry out hydrolysis: a general acid 290 

(proton donor) and a nucleophile/base [21, 22]. Bacteria that are unable to produce hydrolytic 291 

enzymes are due to several factors. The main factor is that bacteria do not have genes encoding 292 

hydrolytic enzymes [32]. 293 

Cellulase is an enzyme complex consisting of endoglucanase, exoglucanase, and β-294 

glucosidase. This enzyme complex hydrolyzes β-1,4-glycosidic linkages in cellulose in 295 

synergy [33]. There are a few numbers of bacteria that possess all of the cellulase enzyme 296 

complex genes. Only a few bacteria can hydrolyze the natural form of cellulose, which is the 297 

crystalline form.  Endoglucanase is the enzyme that has high capabilities to hydrolyze CMC in 298 

artificial media. Bacteria that show low cellulolytic activity on the CMC media might be due 299 

to the lack of the endoglucanase enzyme produced. Truly cellulolytic bacteria that can produce 300 

three cellulase complexes usually utilize cellulose for metabolism, otherwise cellulase only 301 

produced for pathogenesis or cellulose production [34], [35]. 302 

The identification process shows that the DNA sample may have protein contamination 303 

because the purity ratio is below 1.8-2.0 and the concentration below 100 µg/mL, however, the 304 

DNA still can be used as a template for PCR amplification [19]. Protein contamination may 305 

slow PCR amplification process [36]. The results of the PCR analysis showed that the CSZA2 306 

bacterial isolate was a species of Pseudomonas putida RT12 bacteria with a similarity of 307 

99.93% (Figure 4). P. putida has the characteristics of not fermenting sugars. Biochemical test 308 

reactions that generally have positive results are citrate tests [24, 25]. P. putida is a species of 309 

bacteria that can be isolated from soil or endophytes in several plant tissues. P. putida has been 310 

reported to be found in pepper and plant roots [26, 27, 28]. Pseudomonas is one of the most 311 

common taxa found as endophytes, followed by Bacillus, Erwinia, Enterobacter, and 312 

Flavobacterium. The endophytic bacteria have over 40 genera of diversity [21]. The genus 313 

Pseudomonas is classified as a bacteria that can produce cellulase [42]. P. putida has been 314 

reported to be able to produce cellulase enzymes and can be used to break down cellulose from 315 

palm oil mill wastewater [43]. 316 

 317 
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Conclusions 319 

Based on the results, only one isolate which had cellulolytic ability among seven others. 320 

That isolate encode CSZA2 which has been proven to produce cellulase activity with 321 

cellulolytic index 0.87. The results of morphological and biochemical characteristics, as well 322 

as molecular identification indicate that isolate CSZA2 is a Pseudomonas putida RTI2 bacteria, 323 

which is known as a cellulolytic bacteria. The bacterial isolates that have been found can be 324 

developed to produce cellulase. The discovery of bacterial cellulolytic activity can be 325 

developed for biomass degradation, bioethanol production, and agricultural biotechnology. 326 
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