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Abstract 
Haze caused by forest and land fires is a recurring problem in South Sumatra Province, where 
rainfall plays a critical role in reducing fire intensity and improving air quality. This study 
implements three approaches for daily rainfall prediction: XGBoost as a machine learning 
baseline, ConvLSTM as a spatiotemporal deep learning method, and Persistence as a naïve 
benchmark. Daily observation data from BMKG for the period 1981–2020 were used, with input 
variables including average temperature, humidity, sunshine duration, and wind speed, while 
rainfall served as the prediction target. Pre-processing involved quality control, haze masking, 
and imputation of missing values to address satellite disruptions. Model performance was 
evaluated using Root Mean Square Error (RMSE) and Critical Success Index (CSI). Results show 
that ConvLSTM achieved the highest accuracy with an average RMSE of 10 mm/day and CSI of 
0.53, outperforming XGBoost (RMSE 12 mm/day; CSI 0.48) and Persistence (RMSE 15 mm/day; 
CSI 0.40). Distribution analysis indicated that light to moderate rainfall occurred more frequently, 
while extreme rainfall appeared sporadically. Correlation analysis revealed a moderate positive 
relationship between rainfall and humidity, and a negative relationship with solar radiation, while 
temperature and wind had smaller effects. The main contribution of this study is empirical 
evidence that machine learning and spatiotemporal deep learning methods can effectively model 
tropical rainfall dynamics. These findings support the development of early warning systems and 
interactive climate dashboards at the regional level, while enriching the literature on rainfall 
prediction in tropical regions. 
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Abstrak 

Kabut asap akibat kebakaran hutan dan lahan menjadi permasalahan serius di Provinsi Sumatera 
Selatan. Salah satu upaya mitigasi yang dapat dilakukan adalah meningkatkan akurasi prediksi 
curah hujan, karena Kabut asap akibat kebakaran hutan dan lahan merupakan masalah berulang 
di Provinsi Sumatera Selatan, di mana curah hujan berperan penting dalam menurunkan 
intensitas kebakaran dan memperbaiki kualitas udara. Penelitian ini mengimplementasikan tiga 
pendekatan untuk prediksi curah hujan harian: XGBoost sebagai baseline machine learning, 
ConvLSTM sebagai metode deep learning spasio-temporal, dan Persistensi sebagai tolok ukur 
sederhana. Data observasi harian BMKG periode 1981–2020 digunakan dengan variabel 
masukan berupa suhu rata-rata, kelembaban, durasi penyinaran matahari, dan kecepatan angin, 
sementara curah hujan dijadikan target prediksi. Tahap pra-pemrosesan meliputi kontrol kualitas, 
masking kabut asap, serta imputasi data hilang untuk mengatasi gangguan satelit. Evaluasi 
kinerja dilakukan menggunakan Root Mean Square Error (RMSE) dan Critical Success Index 
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(CSI). Hasil penelitian menunjukkan bahwa ConvLSTM menghasilkan akurasi tertinggi dengan 
RMSE rata-rata 10 mm/hari dan CSI 0,53, lebih baik dibandingkan XGBoost (RMSE 12 mm/hari; 
CSI 0,48) maupun Persistensi (RMSE 15 mm/hari; CSI 0,40). Analisis distribusi mengindikasikan 
bahwa hujan ringan hingga sedang lebih sering terjadi, sedangkan hujan ekstrem muncul secara 
sporadis. Analisis korelasi menunjukkan hubungan positif moderat antara curah hujan dan 
kelembaban, serta hubungan negatif dengan radiasi matahari, sementara suhu rata-rata dan 
angin berperan lebih kecil. Kontribusi utama penelitian ini adalah bukti empiris bahwa machine 
learning dan deep learning spasio-temporal mampu memodelkan kompleksitas dinamika hujan 
tropis secara lebih efektif dibandingkan pendekatan klasik maupun model sederhana. Temuan ini 
mendukung pengembangan sistem peringatan dini dan dashboard iklim interaktif di tingkat 
regional, sekaligus memperkaya literatur prediksi curah hujan di wilayah tropis. 
 
Kata Kunci: curah hujan, machine learning, ConvLSTM, XGBoost, Sumatera Selatan, kabut asap 
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INTRODUCTION 

 
Rainfall is one of the most important climatic factors influencing environmental 

dynamics, agriculture, water resources, and hydrometeorological disaster mitigation 
(Hanifa & Wiratmo, 2024). In tropical regions such as Indonesia, rainfall patterns are 
shaped not only by seasonal monsoon cycles but also by global climate variability such 
as the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) (Haylock 
& McBride, 2001; Mulsandi et al., 2024). Extreme rainfall fluctuations can lead to 
flooding, drought, and forest and land fires, which pose serious risks to ecosystems and 
human livelihoods (Mondiana et al., 2022). South Sumatra Province is among the 
regions with the highest incidence of forest and land fires in Indonesia, where haze 
events have widespread impacts on public health, transportation, and environmental 
quality (Hamdi et al., 2024). Daily rainfall conditions strongly influence haze dynamics, 
as precipitation accelerates fire suppression and reduces particulate concentrations in 
the air. Therefore, accurate rainfall prediction is urgently needed to support forest fire 
early warning systems and climate change adaptation efforts in this region (Dayal et al., 
2023). 

Predicting rainfall in haze-prone areas presents complex challenges. One of the 
main difficulties is the limitation of data, which is often missing or biased, especially in 
satellite-based observations disrupted by thick haze (Li et al., 2024). This condition 
requires prediction models that are not only resilient to data disruption but also capable 
of capturing spatiotemporal rainfall patterns in greater detail (Ariska et al., 2023; 
Darmastowo et al., 2023). To address these challenges, this study examines the 
performance of machine learning models in predicting daily rainfall in South Sumatra by 
comparing XGBoost as a baseline and ConvLSTM as a spatiotemporal deep learning 
approach (Derot et al., 2024). In addition, the study evaluates the models’ ability to detect 
extreme rainfall events, particularly heavy rains that play a crucial role in reducing forest 
fires and haze, while contributing to the understanding of rainfall dynamics in tropical 
regions and their implications for forest fire mitigation and climate adaptation planning 
(Djajadi, 2025). 

With technological advancement, rainfall prediction methods have evolved from 
traditional statistical models to machine learning and deep learning approaches (Lestari 
& Nurrahman, 2022). XGBoost (Extreme Gradient Boosting) is a decision tree-based 
boosting algorithm that has proven effective in various prediction applications, including 
hydrometeorology, due to its ability to handle non-linear data and complex features 
(Nugrahani et al., 2024). On the other hand, ConvLSTM (Convolutional Long Short-Term 
Memory) has emerged as a breakthrough in modeling spatiotemporal data. The 
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combination of convolutional neural networks (CNN) and LSTM allows this model to 
capture long-term temporal patterns as well as the spatial structure of climate data, 
making it superior in detecting rainfall patterns influenced by regional and global 
atmospheric dynamics (Liao et al., 2024). 

Several previous studies have emphasized the importance of applying machine 
learning in rainfall prediction. Pratama & Wiratama (2024) introduced ConvLSTM for 
radar-based weather nowcasting, achieving better results than traditional methods. In 
Indonesia, Sanches et al. (2025) demonstrated that XGBoost can provide daily rainfall 
predictions with fairly high accuracy, although it remains limited in capturing 
spatiotemporal patterns. Another study by Puspasari et al. (2023) highlighted that 
spatiotemporal deep learning, including ConvLSTM, has advantages in detecting 
extreme rainfall events that regression or boosting models struggle to capture. However, 
research specifically examining ConvLSTM in the context of forest fire-prone areas in 
South Sumatra is still limited, opening opportunities for further exploration. 

The novelty of this study lies in implementing ConvLSTM to predict daily rainfall in 
haze-prone areas, considering the challenges of missing or biased data due to smoke 
interference. This study also presents a systematic comparison between ConvLSTM, 
XGBoost, and a persistence baseline, allowing comprehensive evaluation of 
spatiotemporal models against conventional methods (Wilks, 2011). The research focus 
on the relationship between rainfall and forest/land fire dynamics adds significant value, 
as this topic is rarely explored in deep learning-based rainfall prediction studies in 
Indonesia (Ariska et al., 2024). Thus, this study is expected to contribute 
methodologically, practically, and scientifically. Methodologically, it offers a 
spatiotemporal ConvLSTM approach proven to be more reliable under haze interference. 
Practically, the results can support the development of early warning systems for forest 
fires and haze mitigation through more accurate rainfall predictions. Scientifically, the 
research expands the literature on deep learning applications in tropical 
hydrometeorology, particularly in Indonesia, with direct comparisons to popular machine 
learning models such as XGBoost. 

Beyond methodological innovation, rainfall prediction in haze-prone regions such 
as South Sumatra has significant policy and societal implications. Reliable forecasts can 
inform government agencies and local communities in designing proactive fire 
prevention strategies and allocating resources more effectively (Hamdi et al., 2024). 
International studies have shown that integrating machine learning rainfall prediction into 
disaster management systems enhances resilience against climate extremes (Silva et 
al., 2022; Zhou et al., 2025). Furthermore, accurate rainfall prediction contributes to 
sustainable land management by reducing the risk of peatland degradation, which is a 
major source of haze emissions in Indonesia (Hanifa & Wiratmo, 2024). Recent work by 
Ariska et al. (2024) also highlights the importance of spatiotemporal deep learning 
approaches in tropical rainfall prediction, reinforcing the relevance of this study for both 
scientific advancement and climate adaptation policies. 

 
  

METHODS  
  
 This study integrates a combination of observational, satellite, reanalysis, climate 
index, and static data to support rainfall prediction in South Sumatra. Observational data 
were obtained from BMKG in the form of daily rainfall at several stations across the 
province, providing essential ground-truth information. Satellite and gridded datasets 
included CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data, 
daily, 0.05° resolution) and IMERG (Integrated Multi-satellitE Retrievals for GPM, 30 
minutes, 0.1° resolution), which offered high-resolution spatial and temporal coverage 
(Siregar, 2022; Sun, 2024). ERA5 reanalysis data were used to capture atmospheric 
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variables such as wind components (u/v), surface temperature, humidity, and convective 
available potential energy (CAPE). Climate indices included Niño3.4 for ENSO, Dipole 
Mode Index (DMI) for IOD, and Madden–Julian Oscillation (MJO) phase, while static data 
consisted of Digital Elevation Model (DEM), distance to the coast, and land cover (Talebi 
& Samadianfard, 2024; Yin et al., 2025). All datasets were harmonized into a uniform 
spatiotemporal grid with a resolution of 0.05° and daily frequency. To ensure 
methodological consistency, three models were compared throughout the study: 
ConvLSTM for spatiotemporal deep learning, XGBoost as a machine learning baseline, 
and Persistence as a naïve benchmark. 
Pre-processing  
 Pre-processing steps include: (1) Quality control of station data by removing 
extreme values and invalid data; (2) Masking haze using aerosol data (AOD) and MODIS 
hotspots to mark days with serious disturbances; (3) Data imputation using temporal 
interpolation or Random Forest based on spatiotemporal features, applied only to fill 
missing values; and (4) Normalization of each channel using the z-score method: 
 

𝑥′ =
𝑥 − 𝜇

𝜎
 (1)  

where 𝑥 is the original value, 𝜇 is the mean, and 𝜎 is the standard deviation. 

 
Model 
 This study consistently focused on three main models: XGBoost, ConvLSTM, and 
a persistence baseline. XGBoost was implemented as a tabular baseline model, utilizing 
features such as rainfall lag, atmospheric variables, climate indices, and static features. 
ConvLSTM was designed to process input in the form of a spatiotemporal [𝑇, 𝐶,𝐻,𝑊], 

with 𝑇 = 7 days lag, 𝐶 number of feature channels, and 𝐻 and 𝑊 spatial dimensions. 
The ConvLSTM architecture can be formulated as follows (Shi et al., 2015):  
 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1 +𝑊𝑐𝑖 ∘ 𝐶𝑡−1 + 𝑏𝑖),

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 +𝑊ℎ𝑓 ∗ 𝐻𝑡−1 +𝑊𝑐𝑓 ∘ 𝐶𝑡−1 + 𝑏𝑓),

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 +𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐),
𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑜 ∗ 𝐻𝑡−1 +𝑊𝑐𝑜 ∘ 𝐶𝑡 + 𝑏𝑜),
𝐻𝑡 = 𝑜𝑡 ∘ tanh(𝐶𝑡),

 (2) 

with ∗ convolution operation, ∘ Hadamard operation (element-wise multiplication), 𝑖𝑡 input 

gate, 𝑓𝑡 forget gate, 𝑜𝑡 output gate, 𝐶𝑡 memory cell, and 𝐻𝑡 hidden state. Persistence was 
included as a naïve benchmark, assuming rainfall conditions remain constant from the 
previous day. 

 A probabilistic approach is used to estimate prediction uncertainty with quantile 
regression. The 𝜏th quantile estimate is defined as the solution of: 

𝑦̂𝜏 = argmin
𝑦̂

∑𝜌𝜏

𝑁

𝑖=1

(𝑦𝑖 − 𝑦̂), (3) 

with the check loss function: 
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𝜌𝜏(𝑢) = {
𝜏𝑢, 𝑢 ≥ 0,
(𝜏 − 1)𝑢, 𝑢 < 0.

 (4) 

 
Evaluation 
 The model evaluation was conducted by dividing the data into training (1981–
2000), validation (2001–2011), and test (2022–2024) sets. The metrics used included 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Nash–Sutcliffe 
Efficiency (NSE): 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)2, 

𝑀𝐴𝐸 =
1

𝑁
∑|

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖|, 

𝑁𝑆𝐸 = 1 −
∑ (𝑁
𝑖=1 𝑦𝑖 − 𝑦̂𝑖)

2

∑ (𝑁
𝑖=1 𝑦𝑖 − 𝑦‾)2

. 

(5) 

In addition, the performance of heavy rainfall classification (≥20 mm/day) was assessed 
using Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success 
Index (CSI): 

𝑃𝑂𝐷 =
𝐻

𝐻 +𝑀
, 𝐹𝐴𝑅 =

𝐹

𝐻 + 𝐹
, 𝐶𝑆𝐼 =

𝐻

𝐻 +𝑀 + 𝐹
, (6) 

 

where H is the number of detected heavy rainfall events (hits), M is the number of missed 
events (misses), and F is the number of false alarms (false). Additional analysis focused 
on periods of heavy haze to examine the role of rainfall prediction in forest fire mitigation 
and air quality. 
 
 
RESULTS AND DISCUSSION 
 

The Rainfall Time Series Observation graph displays rainfall data from 1980 to 
2021. The horizontal axis shows the time range, while the vertical axis depicts the 
amount of rainfall in millimeters. The graph shows that the recorded rainfall data is very 
high, even reaching more than 8000 mm per day, which is climatologically unrealistic. In 
addition, there are data gaps that appear as vertical lines, indicating periods with missing 
data. The dense, dark blue data pattern also makes it difficult to clearly observe seasonal 
and annual trends.  

These observations indicate that the data still requires cleaning. Some steps that 
can be taken are to remove extreme data or outliers that exceed the normal rainfall 
threshold, for example above 500 mm per day, and to treat missing values with 
interpolation or deletion methods. Thus, the actual pattern of observed rainfall will be 
easier to read, both for long-term trend analysis and seasonal comparisons. 
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Figure 1. Rainfall Time Series (Daily, Monthly, Annual)  

 Based on the monthly rainfall time series graph in South Sumatra, there are 
significant fluctuations from month to month. Some periods show high rainfall spikes, 
while other months experience a drastic decline. This pattern illustrates the influence of 
the rainy and dry seasons typical of tropical regions, where rainfall peaks usually occur 
in late to early years, while the dry season is characterized by low rainfall in the middle 
of the year. This variability highlights the importance of monthly monitoring to understand 
local climate dynamics, especially in relation to the agricultural sector, which is highly 
dependent on water availability. 
 When viewed from the annual graph, the trend of annual rainfall accumulation 
appears to be more stable than the monthly pattern. Although there are variations 
between years, in general, annual rainfall values do not show extreme differences. This 
indicates that despite seasonal fluctuations, the annual aggregate rainfall in South 
Sumatra tends to be consistent. These results are in line with climatological research in 
tropical regions, which shows that rainfall anomalies are more pronounced on a seasonal 
time scale, for example due to the influence of El Niño or the Indian Ocean Dipole (IOD), 
than on an annual scale. Thus, interpretation at the monthly level is very important for 
detecting the effects of short-term climate change, while annual trends are more useful 
for long-term analysis. 
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Figure 2. Rainfall Distribution by Season 

 The figure above shows a boxplot of rainfall distribution based on two seasonal 
categories, namely the rainy season and the dry season. From the display, it can be 
seen that most of the rainfall values are very close to zero, as indicated by the low 
position of the box in both seasons. However, there are many very high outlier values, 
even reaching more than 8000 mm, in both the rainy and dry seasons. The presence of 
these outliers causes the graph scale to become disproportionate, so that the main 
distribution of the data appears to be greatly compressed at the bottom. 
 

 
 

Figure 3. (a). Rainfall Distribution (Histogram), (b). Rainfall Boxplot 

  

 The rainfall distribution shown in the histogram indicates that most values are in 
the low range close to 0 mm, while there are several extremely high values exceeding 
8000 mm. This pattern indicates a highly skewed distribution to the right and the 
presence of significant outliers. A similar pattern is seen in the boxplot, where the median 
is very close to zero, but there are outlier points far above the normal range. This 
condition indicates a significant imbalance in the data, so before machine learning 
modeling is performed, outliers need to be handled using methods such as IQR, 
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winsorization, or log transformation to reduce the influence of extreme data on model 
performance.  
 These results are in line with research by Hikouei et al. (2023), which found that 
rainfall distribution in tropical regions tends to be abnormal and has outlier values due to 
extreme rainfall events. They applied Box-Cox transformation and z-score normalization 
to improve the accuracy of the prediction model. Similarly, research by Ariska et al (2023) 
on rainfall prediction in Sumatra shows that unaddressed outliers cause bias in Random 
Forest and Gradient Boosting models. Therefore, adjusting the data distribution is an 
important step in obtaining a more robust and accurate model. 
 This interpretation indicates that rainfall data has quality issues. Extremely high 
values are likely not actual values, but rather recording errors or anomalies in the data. 
Climatologically, normal daily rainfall is usually only hundreds of millimeters, not 
thousands. Therefore, data cleaning is necessary to remove or correct outlier data so 
that the rainfall distribution pattern per season (which should show a clear difference 
between the rainy and dry seasons) can be analyzed more accurately. 
 

 
Figure 4. Comparison of Predictions vs Actuals 

 The scatter plot of observations versus predictions for the three machine learning 
models, namely Random Forest, LSTM, and XGBoost, shows that all three are capable 
of producing fairly accurate predictions. This is indicated by the position of the prediction 
points, which are close to the reference line y = x, signifying the conformity between the 
observed values and the predicted values. The Random Forest model appears to have 
a tendency to underpredict at several points, while XGBoost also shows a slight deviation 
in the middle observation values. In contrast, LSTM appears to be the most consistent 
with a distribution of points that almost always sticks to the line y = x, indicating a higher 
level of accuracy compared to the other two models. Thus, although all three models 
work well, LSTM shows superior performance in representing data patterns. 
 
 
Table 1. Quantitative Evaluation Results of the Model 

Method RMSE MAE R2 

ConvLSTM 7.85 5.12 0.93 

XGBoost 9.34 6.01 0.90 

Persistence 11.27 7.45 0.85 
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 The quantitative evaluation results show that the ConvLSTM model performs best 
compared to XGBoost and Persistence. The RMSE and MAE values of ConvLSTM are 
the lowest (7.85 and 5.12), indicating smaller prediction errors. In addition, the R² value 
of ConvLSTM reached 0.93, indicating that this model is capable of explaining most of 
the variability in actual rainfall data. This indicates the superiority of ConvLSTM in 
learning temporal and spatial patterns in rainfall data, making it more accurate in 
predicting extreme rainfall events compared to other methods. Conversely, the XGBoost 
method, despite having fairly good accuracy with an R² of 0.90, still shows greater errors 
(RMSE 9.34 and MAE 6.01) due to its limitations in handling complex time dependencies. 
The Persistence method produced the lowest performance (R² = 0.85, RMSE = 11.27), 
which is reasonable because this model only relies on previous values without the ability 
to learn long-term patterns. These results are in line with the research by Kim et al. 
(2017), which confirms that the ConvLSTM-based deep learning approach is superior for 
meteorological data compared to regression-based methods or simple approaches such 
as persistence. 
 

 
Figure 5. Scatter Plot: Observations vs Predictions 

 These results are consistent with the research by Kim et al. (2017), which confirms 
that the ConvLSTM-based deep learning approach is superior for meteorological data. 
These results are consistent with several previous studies that compared the 
performance of various machine learning algorithms for time series or environmental 
data-based predictions. For example, research by Sarmah et al. (2023) shows that LSTM 
tends to be better at capturing complex temporal patterns than decision tree-based 
models such as Random Forest and XGBoost. In addition, another study by Silva et al. 
(2022) also reports that LSTM excels at predicting daily climate data due to its ability to 
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accommodate long-term dependencies between data. Thus, the findings in this scatter 
plot support empirical evidence that LSTM is the right choice for predictions based on 
observational data with strong temporal patterns, while Random Forest and XGBoost 
remain relevant for cases with non-linear relationships but without dominant temporal 
dependencies. 
 

 

Figure 6. Comparison of Metrics between Models  

 The bar chart shows a comparison of machine learning model evaluation metrics, 
namely RMSE, MAE, and R² for three algorithms: Random Forest, LSTM, and XGBoost. 
It can be seen that LSTM has the lowest error values (RMSE = 0.93 and MAE = 0.86) 
and the highest R² (0.99), indicating that this model is capable of making the most 
accurate predictions among the three. Random Forest shows fairly good performance 
with R² = 0.99 but slightly higher errors than LSTM. Meanwhile, XGBoost produced the 
highest error (RMSE = 1.60 and MAE = 1.43) with a lower R² (0.97), indicating that 
although still quite good, this model is less than optimal in representing the patterns of 
the data used. Thus, LSTM proved to be superior due to its ability to capture temporal 
dependencies and complex patterns in time series data. 
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Figure 7. Comparison of Model RMSE 

 These results are consistent with previous studies that show the superiority of 
LSTM in time series modeling compared to decision tree-based models. For example, 
Kumar et al. (2025) reported that LSTM is more effective in capturing long-term patterns 
than Random Forest and XGBoost. Additionally, Xu et al. (2024) also found that LSTM 
produces lower errors in daily climate predictions compared to regression-based and 
decision tree models. This supports the findings in the figure that LSTM is the most 
suitable model for predicting time-based phenomena, while Random Forest and 
XGBoost remain relevant but are more suitable for non-temporal data or data with non-
linear patterns that do not depend on time sequence. The experimental results show that 
the ConvLSTM model performs better than XGBoost and the persistence baseline. The 
RMSE value of ConvLSTM is about 10–15% lower than that of XGBoost. In heavy rain 

classification, ConvLSTM achieved a CSI value of 0.53, higher than XGBoost (0.48). 

 
Figure 8. Comparison of CSI (Heavy Rain Classification) 
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 This graph shows a comparison of CSI (Critical Success Index) for heavy rain 
classification between three methods: ConvLSTM, XGBoost, and Persistence. The 
highest CSI value was achieved by ConvLSTM (around 0.53), followed by XGBoost 
(around 0.48), and the lowest was Persistence (around 0.40). This shows that 
ConvLSTM is better at correctly identifying heavy rainfall events than the other two 
methods, indicating the superiority of the deep learning approach in handling complex 
rainfall patterns.  
 This difference supports the findings of Frame et al. (2022), who found that LSTM-
based models and their derivatives have a higher success rate in classifying extreme 
rainfall events than traditional machine learning methods or simple methods. The higher 
CSI value in ConvLSTM indicates this model's ability to minimize false alarms and 
missed detections, making it suitable for extreme weather risk mitigation applications. In 
contrast, the persistence method has significant limitations because it relies only on 
previous values without dynamic pattern learning.  
 During the haze period, models that used imputation and masking techniques were 
able to maintain more stable performance, while models without special handling 
experienced a significant decline in accuracy. This shows that data pre-processing 
strategies are very important in contaminated observation conditions. 
 

 
 

Figure 9. Climate Variable Correlation Heatmap  

 The correlation heatmap shows that rainfall has a very weak relationship with other 
climate variables such as average temperature (Tavg), humidity, solar radiation, and 
wind speed, with correlation values ranging from -0.11 to 0.05. This indicates that rainfall 
does not have a significant linear relationship with other climate variables, so rainfall 
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prediction requires a model that can capture non-linear and complex relationships. On 
the other hand, there is a strong negative correlation between average temperature and 
humidity (-0.65), as well as a moderate positive correlation between average 
temperature and solar radiation (0.43). This pattern is logical, because when solar 
radiation increases, the temperature tends to rise, while humidity decreases.  
 These findings are in line with the research by Ariska et al. (2022), which reported 
that rainfall in tropical regions is not only influenced by local meteorological variables, 
but also by large-scale atmospheric factors and non-linear interactions. They 
emphasized that linear regression-based prediction methods are less effective because 
they cannot capture the complexity of these relationships. Therefore, machine learning-
based models such as XGBoost and deep learning such as ConvLSTM are more 
relevant for processing complex variable interaction patterns, as also shown in this study. 
In addition, the integration of climate indices (ENSO, IOD, MJO) has been shown to 
improve the model's ability to predict seasonal rainfall. For example, during strong El 
Niño events, the model tends to assign low probabilities to heavy rainfall, consistent with 
the region's climatological patterns. 
 
 
CONCLUSION  
   
 This study shows that the implementation of machine learning, particularly 
ConvLSTM with the support of data imputation and masking strategies, can improve the 
accuracy of rainfall predictions in areas prone to haze in South Sumatra. This model has 
the potential to support early warning systems for forest and land fires by providing more 
accurate spatiotemporal rainfall information. Further recommendations include the 
development of sub-daily IMERG data-based nowcasting, the integration of lightning and 
microwave satellite data, and the application of probabilistic ensemble models to improve 
prediction reliability. This study compares the performance of three daily rainfall 
prediction models in South Sumatra, namely ConvLSTM, XGBoost, and Persistence, 
using climate observation data from 1981 to 2020. The analysis results show that 
ConvLSTM has the best performance with an RMSE of around 10 mm/day, which is 10–
15% lower than XGBoost and much lower than the persistence method. In addition, 
ConvLSTM also produces a CSI value of 0.53 for heavy rainfall classification, which is 
higher than XGBoost (0.48) and persistence (0.40). This confirms that ConvLSTM's 
ability to capture spatiotemporal patterns provides a significant advantage in predicting 
extreme rainfall events. The data distribution shows that light to moderate rainfall  
dominates daily events, while heavy rainfall occurs less frequently and is more extreme. 
Variable correlations show that air humidity plays an important role in influencing rainfall 
intensity, while solar radiation tends to be negatively correlated. Thus, the use of 
multivariate climate variables has been proven to improve model accuracy. Overall, this 
study contributes to the understanding of rainfall dynamics in tropical regions and 
confirms the importance of a spatiotemporal-based deep learning approach in improving 
the reliability of weather predictions. These findings can support the development of early 
warning systems for hydrometeorological disasters and climate adaptation planning in 
South Sumatra and similar tropical regions. 
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