

ISSN: 2623-1662 (online), 2460-092X (printed)
DOI: https://doi.org/10.19109/jusifo.v11i2.30467
Vol. 11, No. 2 (2025), p.85-96

%

Development of SEKAPAI: An AI-Based Scaffolding Platform for
Programming Education

Rizki Hikmawan*, Dedi Rohendi, Jaka Septiadi, Muhamad Akda Fathul Barri

ABSTRACT

The rapid adoption of generative artificial intelligence in programming education has raised
concerns regarding student over-dependence and the erosion of computational thinking skills. This
study presents the design and internal validation of SEKAPAI, an AI-based scaffolding platform
developed to support computational thinking while promoting responsible use of generative AI.
Using an Agile-oriented Research and Development approach, SEKAPAI integrates three adaptive
scaffolding modules—Solution Assessment, Code Assessment, and Free Interaction—to deliver
context-aware feedback without providing direct solutions. System requirements were derived
through stakeholder analysis and translated into a modular, web-based architecture supported by
GPT-based services. Internal validation was conducted using comprehensive black-box testing to
evaluate functional correctness, feedback behavior, and alignment with computational thinking
components. The results indicate that SEKAPAI operates reliably across core system features and
consistently implements progressive scaffolding strategies that regulate AI assistance. This study
demonstrates how pedagogical scaffolding principles can be operationalized within AI-assisted
learning systems and provides a technically feasible reference model for responsible AI integration
in programming education.

Keyword: AI-based scaffolding, computational thinking, programming education

Received: July 26, 2025; Revised: October 05, 2025; Accepted: December 20, 2025

Corresponding Author: Rizki Hikmawan, Department of Information Technology and Systems Education, Universitas
Pendidikan Indonesia, Indonesia, hikmariz@upi.edu
Authors: Dedi Rohendi, Department of Technology and Vocational Education, Universitas Pendidikan Indonesia,
Indonesia, dedir@upi.edu; Jaka Septiadi, Department of Information Technology and Systems Education, Universitas
Pendidikan Indonesia, Indonesia, jakaseptiadi@upi.edu; Muhamad Akda Fathul Barri, Department of Information
Technology and Systems Education, Universitas Pendidikan Indonesia, Indonesia, akdafathul@upi.edu

The Author(s) 2025

Licensee Program Studi Sistem Informasi, FST, Universitas Islam Negeri Raden Fatah Palembang,

Indonesia. This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution-ShareAlike (CC BY SA) license (https://creativecommons.org/licenses/by-sa/4.0/).

1. INTRODUCTION

 The integration of Artificial Intelligence (AI) in education has accelerated rapidly with the emergence

of generative language models such as ChatGPT. These technologies have reshaped educational practices

by enabling automated feedback, personalized learning support, and more intuitive interactions,

particularly in academic writing and programming instruction (Kasneci et al., 2023; Rahman & Watanobe,

2023). In parallel, Computational Thinking has gained renewed prominence as a core 21st-century skill,

extending beyond computer science into broader interdisciplinary learning contexts (Nouri et al., 2020).

 Despite these advances, the increasing reliance on AI in educational settings presents substantial

pedagogical challenges. Empirical evidence suggests that students often depend excessively on

AI-generated responses, sometimes placing greater trust in tools such as ChatGPT than in validated

academic sources (Yilmaz & Karaoglan Yilmaz, 2023). This overreliance risks weakening critical thinking,

reducing engagement in structured problem-solving processes, and undermining key dimensions of

computational thinking (Farrokhnia et al., 2024; Mhlanga, 2023). Furthermore, many AI-driven educational

Research Article [OPEN ACCESS]

https://doi.org/10.19109/jusifo.v11i2.30467
mailto:hikmariz@upi.edu
mailto:dedir@upi.edu
mailto:jakaseptiadi@upi.edu
mailto:akdafathul@upi.edu
https://creativecommons.org/licenses/by-sa/4.0/

86

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

applications emphasize automation efficiency rather than pedagogical intentionality, raising concerns

about learner autonomy and long-term learning outcomes.

 Prior research has explored various instructional approaches, including gamified learning

environments, adaptive systems, and AI-supported scaffolding strategies. While these studies highlight the

importance of balancing AI assistance with learner independence (Dela Calzada, 2024; Liao et al., 2024),

most remain conceptual or fragmented in practice. Existing platforms rarely provide an integrated

mechanism that systematically regulates AI support to promote gradual skill development, particularly

within programming education contexts that demand sustained computational thinking.

 More critically, although scaffolding theory has been well established in educational research (Chi et

al., 2001; Van de Pol et al., 2010) and has increasingly been examined in AI-supported learning, there

remains a notable absence of a cohesive platform that operationalizes multi-level AI-based scaffolding.

Specifically, no prior study has implemented a unified system integrating Solution Assessment (SA),

Code Assessment (CA), and Free Interaction (FI) modules within an Agile development framework. This gap

highlights the need for a practical and adaptive AI-based learning system capable of supporting learners

while intentionally fading assistance as competence increases.

 To address this gap, this study develops SEKAPAI, a web-based scaffolding platform powered by GPT

and designed using Agile methodology. SEKAPAI integrates adaptive scaffolding modules—Solution

Assessment (SA), Code Assessment (CA), and Free Interaction (FI)—to deliver contextual feedback aligned

with computational thinking principles while progressively reducing AI intervention. This research

evaluates SEKAPAI from two perspectives: (1) the effectiveness of its design in implementing responsible

AI-assisted scaffolding and (2) its functional performance in supporting computational thinking

development. Through this dual focus, the study contributes a pedagogically grounded and operational

solution for responsible AI integration in programming education.

2. MATERIALS AND METHODS

2.1 Materials

 This study employed a set of technical and computational materials to support the development and

internal validation of the SEKAPAI platform. As a system design–oriented study in the field of information

systems, the materials consisted primarily of software tools, artificial intelligence services, development

infrastructure, and testing artifacts rather than physical instruments or human-subject datasets.

 The platform was developed using modern web technologies to ensure scalability, maintainability, and

cross-platform accessibility. The frontend interface was implemented using Next.js, while backend services

were developed using Node.js and Express to coordinate communication between the client layer, database

services, and AI components. User interface and interaction designs were prototyped using Figma to

support a user-centered and mobile-first design approach.

 Artificial intelligence functionalities within SEKAPAI were powered by the OpenAI GPT API (GPT-3.5

and GPT-4), which has been widely adopted in educational contexts for adaptive feedback and

programming support. The AI models were accessed through structured system prompts tailored to each

scaffolding module—Solution Assessment (SA), Code Assessment (CA), and Free Interaction (FI). Prompt

configurations were designed to regulate the level of instructional support provided and to prevent direct

solution disclosure, in line with recommended practices for responsible AI use in education (Liao et al.,

2024).

 For data management, PostgreSQL was used as the primary database to store interaction logs, system

responses, and progress-related records generated during internal testing. The system infrastructure was

hosted on Amazon Web Services (AWS), while system monitoring and error tracking during development

were supported using CloudWatch and Sentry. Version control and collaborative development were

managed through GitHub. System validation relied on predefined testing materials, including black-box

testing scenarios, equivalence partitioning rules, and boundary value definitions. This testing strategy is

commonly applied in software-based educational systems to assess functional correctness and output

reliability without inspecting internal code structures (Gunawan et al., 2023).

87

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

2.2 Methods

 This study adopts a Research and Development approach to design, implement, and internally validate

an AI-based scaffolding platform. The methodological focus of this research is on system development,

technical implementation, and functional validation, rather than large-scale empirical measurement of

learning outcomes. To support iterative refinement and pedagogical alignment, the development process

was guided by Agile principles, emphasizing flexibility, incremental delivery, and responsiveness to user

feedback (Gheorghe et al., 2020; Larasati et al., 2021).

2.3 Research Design and Development Approach

 The research design integrates three main components: (1) pedagogically informed system design,

(2) Agile-based iterative development, and (3) internal system validation. This integration enables

theoretical principles related to computational thinking and scaffolding to be operationalized into a

functional digital system while maintaining practical feasibility.

 The Agile-inspired approach was selected to enable continuous adaptation during development

without rigid adherence to formal frameworks such as Scrum (Zhen, 2024). Development iterations were

conducted in weekly cycles, allowing incremental enhancement of system features and early identification

of design inconsistencies. This approach aligns with prior studies highlighting the effectiveness of Agile

methods in educational system development and AI-supported learning environments (Gheorghe et al.,

2020; Laval et al., 2021).

2.4 Requirements Analysis and User-Centered Design

 Requirements analysis was conducted through structured interviews and classroom observations

involving programming instructors and students as primary stakeholders. This phase aimed to identify

learning difficulties, interaction preferences, and pedagogical constraints associated with programming

education and AI usage. The analysis focused on four requirement dimensions: educational, user

experience, pedagogical, and technical requirements (Moon et al., 2020; Yusoff et al., 2020).

 Educational requirements emphasized the need to support computational thinking development while

mitigating over-reliance on AI tools. User experience requirements addressed interface clarity, interaction

flow, and accessibility. Pedagogical constraints were defined to prevent direct solution disclosure and

encourage independent reasoning, consistent with concerns about AI dependency in educational contexts

(Tiwari, 2023). Technical requirements specified system responsiveness, performance stability, and

integration with AI services. The resulting requirements were translated into functional specifications and

interaction flows to guide system design (Weintrop et al., 2021).

2.5 Agile-Inspired Development Process

 The development of the SEKAPAI platform adopted an Agile-inspired iterative process to ensure

flexibility, continuous refinement, and alignment between pedagogical objectives and technical

implementation. Instead of strictly following a formal Agile framework, this study applied core Agile

principles—incremental development, responsiveness to feedback, and iterative evaluation—to

accommodate the evolving requirements of an AI-assisted learning system. The development cycle

consisted of six recurring stages: requirements definition, design, implementation, testing, deployment, and

review. During the design stage, user interface structures, system architecture, and AI interaction scenarios

were specified for each scaffolding module, with explicit constraints imposed to prevent unrestricted AI

assistance that could undermine learning objectives.

 Implementation was carried out using a modular development strategy that enabled independent

development and refinement of the Solution Assessment (SA), Code Assessment (CA), and Free Interaction

(FI) modules. Each iteration incorporated internal testing feedback to verify functional correctness,

interaction consistency, and adherence to predefined educational requirements. The review phase of each

cycle emphasized both technical stability and pedagogical behavior, particularly the appropriateness of

88

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

feedback depth and the gradual reduction of AI assistance. This iterative refinement process facilitated early

identification of design inconsistencies, supported adaptive feature evolution, and reduced the risk of scope

drift during extended development cycles, thereby providing a practical and controlled approach to

operationalizing AI-based scaffolding within programming education.

2.6 System Architecture and Technical Implementation

 SEKAPAI employs a modular, three-layer architecture consisting of a client layer, backend services,

and cloud infrastructure. The client interface was developed using Next.js with Zustand for state

management, enabling responsive interaction across devices. Backend services, implemented using Node.js

and Express, function as an API gateway coordinating communication between the client interface, database

services, and AI components.

 AI-based feedback is generated through the OpenAI GPT API using structured prompts designed to

support scaffolding principles while preventing solution dependency. Core backend components include a

prompt engine, context manager, execution engine, and recommendation module, which collectively

regulate interaction flow and adjust scaffolding intensity based on user behavior. This architecture

operationalizes adaptive feedback aligned with computational thinking dimensions and the principles of

scaffolding.

3. RESULTS AND DISCUSSION

3.1 Requirements Analysis

 The requirements analysis was conducted through interviews with educational stakeholders and

observations of students’ programming learning patterns. This process yielded three interrelated

categories of requirements—functional, non-functional, and educational—intended to ensure that SEKAPAI

supports AI-assisted scaffolding while maintaining learning continuity and responsible AI use. Functionally,

the platform must accept pseudocode and program code, generate AI-based feedback, support interactive

dialogue, and manage user interaction history, which is essential for tracking learning progression and

refining adaptive feedback strategies over time (Faber et al., 2024). Non-functional requirements

emphasize responsiveness, usability, cross-platform accessibility, and stable performance under

concurrent classroom use. Educational requirements focus on scaffolding-oriented learning support

through constructive feedback and the gradual promotion of learner independence, explicitly addressing

the risk of over-dependency associated with generative AI use in educational contexts (Rowlett & Corner,

2022).

 To operationalize these functional, non-functional, and educational requirements, a scenario-based

interaction model was defined to illustrate how the identified requirements are enacted within the system.

Table 1 presents a representative interaction scenario in which a single programming task is addressed

through the three scaffolding modules: Solution Assessment (SA), Code Assessment (CA), and Free

Interaction (FI). The scenario demonstrates how functional requirements are implemented across modules

while educational requirements are reflected through the regulation of AI assistance levels—ranging from

conceptual reasoning without solution disclosure in SA, to implementation-focused feedback in CA, and

controlled exploratory dialogue in FI. This staged and role-specific interaction clarifies how scaffolding

intensity is progressively adjusted to foster learner independence while mitigating the risk of AI over-

dependency, thereby validating the alignment between the identified requirements and the modular design

of the SEKAPAI platform.

3.2 System Design Results

 The system design phase resulted in a set of structured design artifacts that formalize the architecture,

interaction model, and learning workflow of the SEKAPAI platform. The primary design outputs comprise

the system architecture of SEKAPAI (Figure 1), the use case diagram of the SEKAPAI system (Figure 2), the

activity diagram of the SEKAPAI learning workflow (Figure 3), and the sequence diagram of SEKAPAI

89

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

modules (Figure 4). Collectively, these artifacts delineate the functional scope, interaction logic, and

pedagogical flow of the platform across its three core modules: Solution Assessment (SA), Code Assessment

(CA), and Free Interaction (FI).

Table 1. Scenario-based interaction requirements of the SEKAPAI platform

Role
Scaffolding
Module

Interaction Description

System --- Task as follows: Given a string containing lowercase letters and parentheses, remove

all parentheses and return the modified string. Example: input (a(b)c)d becomes abcd.

User SA Please evaluate the following solution: Use a count variable to track the number of

opening parentheses. Iterate through each character. If character is '(', increment count.

If ')', decrement count. At the end of iteration, if count = 0, then string is valid. If not,

return false.

Assistant SA Okay, I've reviewed your proposed solution. It seems like you're on the right track with

using a counter to keep track of the balance between opening and closing parentheses.

However, let's think a bit more deeply about potential edge cases and scenarios.

• What happens if you encounter a closing parenthesis before an opening one? Does

your current approach handle this situation correctly?

• Could you provide an example string that would cause your solution to return an

incorrect result? Thinking about such examples can help refine your algorithm.

• How would you handle other characters in the string besides parentheses? Should

they be ignored, or could they potentially impact the validity of the string in some

way?

Consider these questions, and let me know if you'd like to discuss further!

User CA Please evaluate the following code: public class RemoveParentheses {public static String

remove(String s) {Stack<Character> stack = new Stack<>();StringBuilder sb = new

StringBuilder();for (char c : s.toCharArray()) {if (c == '(') stack.push(c);else if (c == ')')

stack.pop();else sb.append(c);}return sb.toString();}

Assistant CA This code uses a stack to remove parentheses, but does not yet handle cases of

unbalanced parentheses.

User FI What if there are unbalanced parentheses in the input?

Assistant FI Solution for handling mismatch: if (!stack.isEmpty() && stack.peek() == '(') { stack.pop();}

else { throw new IllegalArgumentException("Invalid input");}

 At the architectural level, the system architecture illustrates the overall structural organization of

SEKAPAI, including the client layer, backend services, and AI integration components. This structure defines

how user interactions are managed through the frontend interface, processed by backend services, and

supported by GPT-based AI feedback mechanisms. The layered design promotes modularity, scalability, and

maintainability while enabling the implementation of adaptive scaffolding strategies within the learning

environment.

 From an interaction perspective, the Use Case Diagram specifies the relationships between system

actors and platform functionalities. Two primary actor groups are identified: students and administrators.

Students are provided access to all learning modules (SA, CA, and FI), profile management features, and

interaction history, whereas administrators are responsible for system configuration and maintenance.

This interaction model supports flexible learning pathways and systematic progress monitoring, which are

essential for personalized learning support in digital education environments (Raghavan et al., 2021).

 The Activity Diagram of the SEKAPAI learning workflow represents the end-to-end learning process

experienced by users. The workflow begins with user authentication and dashboard access, followed by

module selection, input submission, AI-based analysis, feedback generation, interaction logging, progress

tracking, and recommendation delivery. This activity flow operationalizes adaptive learning paths and real-

90

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

time feedback mechanisms, thereby supporting individualized learning experiences and the development

of computational thinking skills (Sayed et al., 2022).

 Building on this workflow representation, the Sequence Diagram details the temporal interaction

between users, system components, and GPT-based AI services. It illustrates how user inputs are

transmitted through backend services, processed by the GPT API, and returned as scaffolded feedback

across the SA, CA, and FI modules. This interaction sequence ensures consistency in inquiry handling, code

evaluation, and exploratory dialogue while preserving contextual continuity throughout the learning

process.

Figure 1. System architecture of SEKAPAI

Figure 2. Use case diagram of the SEKAPAI system

91

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

Figure 3. Activity diagram of SEKAPAI learning workflow

Figure 4. Sequence diagram of SEKAPAI modules

3.3 Validation Results

 System validation results were obtained through comprehensive black-box testing, in which each

scenario evaluated system functionality, feedback quality, and alignment with computational thinking

development. Testing was organized around core system features and scaffolding modules, with expected

and actual outcomes documented and summarized in Table 2. The results indicate that essential system

functions (e.g., sign up and sign in) and module-level behaviors across Solution Assessment (SA), Code

92

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

Assessment (CA), and Free Interaction (FI) consistently achieved a Pass status. Importantly, the educational

impact of each scenario is explicitly mapped to computational thinking components—such as

decomposition, abstraction, debugging, and pattern recognition—as well as to responsible AI-use

behaviors, including the redirection of direct solution-seeking attempts toward scaffolded guidance.

 Beyond functional correctness, the validation results demonstrate the system’s adaptive scaffolding

capabilities. The testing outcomes show that SEKAPAI is able to differentiate between novice and

intermediate input cases, regulate feedback depth accordingly, and promote learner independence through

progressive adjustment of assistance. In particular, the Code Assessment module achieved over 95%

functional accuracy in syntax recognition and response delivery, indicating technical robustness.

Collectively, these findings provide evidence of the platform’s technical feasibility and pedagogical

alignment, while establishing a foundation for subsequent pilot testing with 5–10 students using

standardized usability and user experience instruments such as SUS and UEQ.

Table 2. Black-box testing results of the SEKAPAI platform

ID
Feature /
Module

Test
Description
(Scenario)

Expected Result Actual Result Status
Educational
Impact

TC-
SGNUP

Sign Up User
registration
using a valid
email address

User account is
created successfully

Account created
and confirmation
email delivered

Pass Enables
personalized
interaction
tracking

TC-
SGNIN

Sign In User login with
valid
credentials

User successfully
accesses the
dashboard

Dashboard
loaded and
session activated

Pass Supports
continuity of
learning
activities

TC-SA-
01

Solution
Assessment
(SA)

Submission of
pseudocode for
a sorting
algorithm

System provides
conceptual feedback
on solution logic

Constructive
feedback on
algorithmic
structure
generated

Pass Supports
decomposition
and abstraction

TC-SA-
02

Solution
Assessment
(SA)

Submission of
an incomplete
algorithm
description

System prompts
clarification while
offering guidance

Scaffolded
feedback
provided without
disclosing
solutions

Pass Encourages
reflective and
independent
thinking

TC-CA-
01

Code
Assessment
(CA)

Submission of
code containing
syntax errors

System detects
errors and provides
improvement
suggestions

Relevant
diagnostic
feedback
generated

Pass Enhances
debugging skills

TC-CA-
02

Code
Assessment
(CA)

Submission of
functionally
correct but
inefficient code

System provides
efficiency-oriented
recommendations

Constructive
feedback on code
optimization
delivered

Pass Develops
algorithmic
efficiency
awareness

TC-FI-
01

Free
Interaction
(FI)

Conceptual Q&A
related to
programming
topics

System generates
contextual and
educational
responses

Relevant
explanations
supporting
conceptual
understanding

Pass Supports
pattern
recognition

TC-FI-
02

Free
Interaction
(FI)

Attempt to
obtain direct
assignment
solutions

System redirects
interaction toward
scaffolded learning

Direct solutions
refused; guided
learning prompts
provided

Pass Mitigates AI
dependency and
academic
misconduct

93

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

3.4 Deployment and Internal Review Results

 Following the completion of black-box testing, the SEKAPAI platform was deployed to a production

environment using Amazon Web Services (AWS). The deployment process involved environment

configuration, PostgreSQL database migration, OpenAI API integration with rate limiting, custom domain

and SSL certificate setup, as well as the implementation of monitoring and logging mechanisms. Deployment

results indicate that the system achieved stable operational performance, with recorded uptime reaching

99.9% and average GPT API response times remaining below 500 milliseconds. These outcomes

demonstrate the platform’s readiness to deliver reliable AI-assisted educational services under real-world

operational conditions.

 In parallel with deployment, an internal review was conducted through structured trials by the

development team to assess system behavior across technical, pedagogical, and user experience

dimensions. The review observations indicate that SEKAPAI performed consistently across its core

modules, delivering timely and contextually appropriate AI-based feedback while maintaining the intended

scaffolding constraints. The interaction flow across modules was found to support guided problem-solving

without disclosing direct solutions, thereby preserving pedagogical integrity. Overall, the deployment and

internal review results confirm that SEKAPAI is technically stable, operationally viable, and aligned with its

design objective of supporting responsible AI-assisted learning prior to empirical evaluation with student

users.

3.5 Discussion

 The development and internal validation of the SEKAPAI platform represent a strategic response to

the increasing integration of artificial intelligence in programming education, particularly in addressing the

pedagogical risks associated with students’ over-dependence on generative tools such as ChatGPT. This

study demonstrates that, when supported by intentional scaffolding mechanisms—namely the Solution

Assessment (SA), Code Assessment (CA), and Free Interaction (FI) modules—AI can be repositioned from a

substitute for student reasoning to a dynamic form of cognitive support. The system-generated feedback

was found to be adaptive and contextually relevant, aligning with core components of computational

thinking, including decomposition, abstraction, pattern recognition, and algorithmic design.

 The findings further indicate that an iterative Agile development process plays a critical role in

maintaining both pedagogical alignment and system usability in AI-based learning environments. Unlike

linear development models, the Agile approach enabled continuous refinement based on user interaction

and internal testing, contributing to the reliability of system features and the relevance of AI-generated

feedback. This observation is consistent with prior studies reporting that Agile methodologies in

educational system development enhance learner engagement and motivation (Laval et al., 2021; Saputra

et al., 2025).

 SEKAPAI’s design choice to implement graduated feedback while deliberately avoiding direct solution

provision reflects current perspectives in AI ethics and pedagogy. In line with the framework proposed by

Liao et al. (2024), which emphasizes AI systems that support rather than replace learner thinking, SEKAPAI

encourages reflection, revision, and problem-solving through guided prompts. This approach is central to

fostering learner independence. Similarly, the findings align with Faber et al. (2024), who reported that

adaptive scaffolding mechanisms improve learner engagement and reduce cognitive overload—effects that

were also observed during the internal validation phase of SEKAPAI.

 The alignment between SEKAPAI’s system architecture and educational theory further supports its

long-term viability. The integration of prompt engineering, modular feedback loops, and interaction history

tracking enables a responsible AI design that promotes learner autonomy over time. Unlike conventional

black-box AI systems, where interaction is often passive and pedagogical transparency is limited, SEKAPAI

embeds instructional logic directly into its interaction design, ensuring that AI assistance remains

transparent, adaptive, and pedagogically grounded. Overall, the findings suggest that generative AI can be

pedagogically meaningful when implemented through intentional scaffolding and iterative refinement.

Beyond its immediate functional value, SEKAPAI offers a transferable design framework for learning

94

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

contexts that require critical thinking and iterative problem-solving; however, further empirical evaluation

in authentic educational settings is required to assess scalability, long-term effectiveness, and cross-

disciplinary applicability.

4. CONCLUSION

 This study presented the design, development, and internal validation of SEKAPAI, an AI-based

scaffolding platform intended to support computational thinking development in programming education

while mitigating excessive reliance on generative AI tools. Developed using an Agile-oriented Research and

Development approach, SEKAPAI integrates three adaptive scaffolding modules—Solution Assessment

(SA), Code Assessment (CA), and Free Interaction (FI)—to deliver context-aware feedback aligned with

established computational thinking components. The internal validation results confirm that the system

operates reliably and successfully implements progressive scaffolding through controlled AI assistance

rather than direct solution provision.

 From a systems perspective, SEKAPAI demonstrates how pedagogical scaffolding principles can be

explicitly embedded into the architecture and interaction design of an AI-assisted learning platform. The

modular, web-based architecture supports extensibility and potential integration with existing learning

management systems, while the adaptive fading mechanism offers a concrete strategy for balancing AI

support and learner autonomy. These characteristics position SEKAPAI as a technically feasible and

pedagogically grounded reference model for responsible AI integration in programming-related learning

contexts.

 Nevertheless, this research is intentionally limited to system design and internal validation.

No empirical evaluation involving real student users has been conducted at this stage. Consequently,

learning effectiveness, usability, and user experience outcomes cannot yet be inferred. Future research will

therefore focus on pilot implementation in authentic educational settings, where usability and user

experience will be systematically evaluated using standardized instruments such as the System Usability

Scale (SUS) and User Experience Questionnaire (UEQ). Further extensions may include learning analytics,

instructor-facing dashboards, and adaptive feedback calibration mechanisms to support scalability and

cross-disciplinary application.

CONFLICT OF INTEREST

 The authors declare no conflict of interest.

REFERENCES

Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring.

Cognitive Science, 25(4), 471–533. https://doi.org/10.1207/S15516709COG2504_1

Dela Calzada, K. P. (2024). Anti-dependency teaching strategy for innovation in the age of ai among

technology-based students. Environment and Social Psychology, 9(8).

https://doi.org/10.59429/ESP.V9I8.3026

Faber, T. J. E., Dankbaar, M. E. W., van den Broek, W. W., Bruinink, L. J., Hogeveen, M., & van Merriënboer, J.

J. G. (2024). Effects of adaptive scaffolding on performance, cognitive load and engagement in game-

based learning: a randomized controlled trial. BMC Medical Education, 24(1), 943-.

https://doi.org/10.1186/S12909-024-05698-3

Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A swot analysis of chatgpt: implications for

educational practice and research. Innovations in Education and Teaching International, 61(3), 460–

474. https://doi.org/10.1080/14703297.2023.2195846

Gheorghe, A.-M., Gheorghe, I. D., & Iatan, I. L. (2020). Agile software development. Informatica Economica,

24(2/2020), 90–100. https://doi.org/10.24818/issn14531305/24.2.2020.08

Gunawan, R., Wibisono, Y. P., Primasari, C. H., Budiyanto, D., & Cininta, M. (2023). Blackbox testing on virtual

reality gamelan saron using equivalence partition method. Jurnal Buana Informatika, 14(01), 11–19.

https://doi.org/10.24002/JBI.V14I01.6606

https://doi.org/10.1207/S15516709COG2504_1
https://doi.org/10.59429/ESP.V9I8.3026
https://doi.org/10.1186/S12909-024-05698-3
https://doi.org/10.1080/14703297.2023.2195846
https://doi.org/10.24818/issn14531305/24.2.2020.08
https://doi.org/10.24002/JBI.V14I01.6606

95

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G.,

Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O.,

Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). Chatgpt for good? on opportunities and

challenges of large language models for education. Learning and Individual Differences, 103, 102274.

https://doi.org/10.1016/J.LINDIF.2023.102274

Larasati, I., Yusril, A. N., & Zukri, P. Al. (2021). Systematic literature review analisis metode agile dalam

pengembangan aplikasi mobile. Sistemasi: Jurnal Sistem Informasi, 10(2), 369–380.

https://doi.org/10.32520/STMSI.V10I2.1237

Laval, J., Fleury, A., Karami, A. B., Lebis, A., Lozenguez, G., Pinot, R., & Vermeulen, M. (2021). Toward an

innovative educational method to train students to agile approaches in higher education: the a.l.p.e.s.

Education Sciences, 11(6), 267. https://doi.org/10.3390/EDUCSCI11060267

Liao, J., Zhong, L., Zhe, L., Xu, H., Liu, M., & Xie, T. (2024). Scaffolding computational thinking with chatgpt.

IEEE Transactions on Learning Technologies, 17, 1668–1682.

https://doi.org/10.1109/TLT.2024.3392896

Mhlanga, D. (2023). Open ai in education, the responsible and ethical use of chatgpt towards lifelong

learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4354422

Moon, J., Do, J., Lee, D., & Choi, G. W. (2020). A conceptual framework for teaching computational thinking in

personalized oers. Smart Learning Environments 2020 7:1, 7(1), 6-. https://doi.org/10.1186/S40561-

019-0108-Z

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital

competence and 21st century skills when learning programming in k-9. Education Inquiry, 11(1), 1–

17. https://doi.org/10.1080/20004508.2019.1627844

Raghavan, S., M, S., S, S., & Devi M, Dr. D. (2021). Student support system an one stop portal. International

Journal of Advanced Research in Science, Communication and Technology, 66–71.

https://doi.org/10.48175/IJARSCT-1211

Rahman, M. M., & Watanobe, Y. (2023). Chatgpt for education and research: opportunities, threats, and

strategies. Applied Sciences, 13(9), 5783. https://doi.org/10.3390/APP13095783

Rowlett, P., & Corner, A. S. (2022). Flexible, student-centred remote learning for programming skills

development. International Journal of Mathematical Education in Science and Technology, 53(3), 619–

626. https://doi.org/10.1080/0020739X.2021.1989067

Saputra, J. P. B., Prabowo, H., Gaol, F. L., & Hertono, G. F. (2025). Development of gamification-based learning

management system (lms) with agile approach and personalization of fslsm learning style to improve

learning effectiveness. Journal of Applied Data Sciences, 6(1), 714–725.

https://doi.org/10.47738/JADS.V6I1.486

Sayed, W. S., Noeman, A. M., Abdellatif, A., Abdelrazek, M., Badawy, M. G., Hamed, A., & El-Tantawy, S. (2022).

AI-based adaptive personalized content presentation and exercises navigation for an effective and

engaging e-learning platform. Multimedia Tools and Applications, 82(3), 3303–3333.

https://doi.org/10.1007/S11042-022-13076-8

Tiwari, R. (2023). The integration of ai and machine learning in education and its potential to personalize

and improve student learning experiences. International Journal of Scientific Research in Engineering

and Management, 07(02). https://doi.org/10.55041/IJSREM17645

Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: a decade of

research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/S10648-010-

9127-6

Weintrop, D., Wise Rutstein, D., Bienkowski, M., & McGee, S. (2021). Assessing computational thinking: an

overview of the field. Computer Science Education, 31(2), 113–116.

https://doi.org/10.1080/08993408.2021.1918380

Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (ai)-based tool use

on students’ computational thinking skills, programming self-efficacy and motivation. Computers and

Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/J.CAEAI.2023.100147

https://doi.org/10.1016/J.LINDIF.2023.102274
https://doi.org/10.32520/STMSI.V10I2.1237
https://doi.org/10.3390/EDUCSCI11060267
https://doi.org/10.1109/TLT.2024.3392896
https://doi.org/10.2139/SSRN.4354422
https://doi.org/10.1186/S40561-019-0108-Z
https://doi.org/10.1186/S40561-019-0108-Z
https://doi.org/10.1080/20004508.2019.1627844
https://doi.org/10.48175/IJARSCT-1211
https://doi.org/10.3390/APP13095783
https://doi.org/10.1080/0020739X.2021.1989067
https://doi.org/10.47738/JADS.V6I1.486
https://doi.org/10.1007/S11042-022-13076-8
https://doi.org/10.55041/IJSREM17645
https://doi.org/10.1007/S10648-010-9127-6
https://doi.org/10.1007/S10648-010-9127-6
https://doi.org/10.1080/08993408.2021.1918380
https://doi.org/10.1016/J.CAEAI.2023.100147

96

 JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An AI-Based Scaffolding Platform for Programming Education

Yusoff, K. M., Ashaari, N. S., Wook, T. S. M. T., & Ali, N. M. (2020). Analysis on the requirements of

computational thinking skills to overcome the difficulties in learning programming. International

Journal of Advanced Computer Science and Applications, 11(3), 244–253.

https://doi.org/10.14569/IJACSA.2020.0110329

Zhen, Z. (2024). Research and practice of agile software development methods. Applied and Computational

Engineering, 114(1), 186–190. https://doi.org/10.54254/2755-2721/2024.18284

https://doi.org/10.14569/IJACSA.2020.0110329
https://doi.org/10.54254/2755-2721/2024.18284

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1 Materials
	2.2 Methods
	2.3 Research Design and Development Approach
	2.4 Requirements Analysis and User-Centered Design
	2.5 Agile-Inspired Development Process
	2.6 System Architecture and Technical Implementation

	3. RESULTS AND DISCUSSION
	3.1 Requirements Analysis
	3.2 System Design Results
	3.3 Validation Results
	3.4 Deployment and Internal Review Results
	3.5 Discussion

	4. CONCLUSION
	CONFLICT OF INTEREST
	REFERENCES

