ISSN: 2623-1662 (online), 2460-092X (printed) y
DOI: https://doi.org/10.19109/jusifo.v11i2.30467 4 L4
Vol. 11, No. 2 (2025), p85-96 Ju |S”I I‘IEFI'Q

Research Article [OPEN ACCESS]

Development of SEKAPAI: An Al-Based Scaffolding Platform for
Programming Education

Rizki Hikmawan*, Dedi Rohendi, Jaka Septiadi, Muhamad Akda Fathul Barri

ABSTRACT

The rapid adoption of generative artificial intelligence in programming education has raised
concerns regarding student over-dependence and the erosion of computational thinking skills. This
study presents the design and internal validation of SEKAPAI, an Al-based scaffolding platform
developed to support computational thinking while promoting responsible use of generative Al
Using an Agile-oriented Research and Development approach, SEKAPAI integrates three adaptive
scaffolding modules—Solution Assessment, Code Assessment, and Free Interaction—to deliver
context-aware feedback without providing direct solutions. System requirements were derived
through stakeholder analysis and translated into a modular, web-based architecture supported by
GPT-based services. Internal validation was conducted using comprehensive black-box testing to
evaluate functional correctness, feedback behavior, and alighment with computational thinking
components. The results indicate that SEKAPAI operates reliably across core system features and
consistently implements progressive scaffolding strategies that regulate Al assistance. This study
demonstrates how pedagogical scaffolding principles can be operationalized within Al-assisted
learning systems and provides a technically feasible reference model for responsible Al integration
in programming education.

Keyword: Al-based scaffolding, computational thinking, programming education

Received: July 26, 2025; Revised: October 05, 2025; Accepted: December 20, 2025

Corresponding Author: Rizki Hikmawan, Department of Information Technology and Systems Education, Universitas
Pendidikan Indonesia, Indonesia, hikmariz@upi.edu

Authors: Dedi Rohendi, Department of Technology and Vocational Education, Universitas Pendidikan Indonesia,
Indonesia, dedir@upi.edu; Jaka Septiadi, Department of Information Technology and Systems Education, Universitas
Pendidikan Indonesia, Indonesia, jakaseptiadi@upi.edu; Muhamad Akda Fathul Barri, Department of Information
Technology and Systems Education, Universitas Pendidikan Indonesia, Indonesia, akdafathul@upi.edu

The Author(s) 2025

Licensee Program Studi Sistem Informasi, FST, Universitas Islam Negeri Raden Fatah Palembang,
Indonesia. This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-ShareAlike (CC BY SA) license (https://creativecommons.org/licenses/by-sa/4.0/).

1. INTRODUCTION

The integration of Artificial Intelligence (Al) in education has accelerated rapidly with the emergence
of generative language models such as ChatGPT. These technologies have reshaped educational practices
by enabling automated feedback, personalized learning support, and more intuitive interactions,
particularly in academic writing and programming instruction (Kasneci et al., 2023; Rahman & Watanobe,
2023). In parallel, Computational Thinking has gained renewed prominence as a core 21st-century skill,
extending beyond computer science into broader interdisciplinary learning contexts (Nouri et al., 2020).

Despite these advances, the increasing reliance on Al in educational settings presents substantial
pedagogical challenges. Empirical evidence suggests that students often depend excessively on
Al-generated responses, sometimes placing greater trust in tools such as ChatGPT than in validated
academic sources (Yilmaz & Karaoglan Yilmaz, 2023). This overreliance risks weakening critical thinking,
reducing engagement in structured problem-solving processes, and undermining key dimensions of
computational thinking (Farrokhnia et al., 2024; Mhlanga, 2023). Furthermore, many Al-driven educational

https://doi.org/10.19109/jusifo.v11i2.30467
mailto:hikmariz@upi.edu
mailto:dedir@upi.edu
mailto:jakaseptiadi@upi.edu
mailto:akdafathul@upi.edu
https://creativecommons.org/licenses/by-sa/4.0/

86 Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education

applications emphasize automation efficiency rather than pedagogical intentionality, raising concerns
about learner autonomy and long-term learning outcomes.

Prior research has explored various instructional approaches, including gamified learning
environments, adaptive systems, and Al-supported scaffolding strategies. While these studies highlight the
importance of balancing Al assistance with learner independence (Dela Calzada, 2024; Liao et al.,, 2024),
most remain conceptual or fragmented in practice. Existing platforms rarely provide an integrated
mechanism that systematically regulates Al support to promote gradual skill development, particularly
within programming education contexts that demand sustained computational thinking.

More critically, although scaffolding theory has been well established in educational research (Chi et
al,, 2001; Van de Pol et al, 2010) and has increasingly been examined in Al-supported learning, there
remains a notable absence of a cohesive platform that operationalizes multi-level Al-based scaffolding.
Specifically, no prior study has implemented a unified system integrating Solution Assessment (SA),
Code Assessment (CA), and Free Interaction (FI) modules within an Agile development framework. This gap
highlights the need for a practical and adaptive Al-based learning system capable of supporting learners
while intentionally fading assistance as competence increases.

To address this gap, this study develops SEKAPAI, a web-based scaffolding platform powered by GPT
and designed using Agile methodology. SEKAPAI integrates adaptive scaffolding modules—Solution
Assessment (SA), Code Assessment (CA), and Free Interaction (FI)—to deliver contextual feedback aligned
with computational thinking principles while progressively reducing Al intervention. This research
evaluates SEKAPAI from two perspectives: (1) the effectiveness of its design in implementing responsible
Al-assisted scaffolding and (2) its functional performance in supporting computational thinking
development. Through this dual focus, the study contributes a pedagogically grounded and operational
solution for responsible Al integration in programming education.

2. MATERIALS AND METHODS
2.1 Materials

This study employed a set of technical and computational materials to support the development and
internal validation of the SEKAPAI platform. As a system design-oriented study in the field of information
systems, the materials consisted primarily of software tools, artificial intelligence services, development
infrastructure, and testing artifacts rather than physical instruments or human-subject datasets.

The platform was developed using modern web technologies to ensure scalability, maintainability, and
cross-platform accessibility. The frontend interface was implemented using Next.js, while backend services
were developed using Node.js and Express to coordinate communication between the client layer, database
services, and Al components. User interface and interaction designs were prototyped using Figma to
support a user-centered and mobile-first design approach.

Artificial intelligence functionalities within SEKAPAI were powered by the OpenAl GPT API (GPT-3.5
and GPT-4), which has been widely adopted in educational contexts for adaptive feedback and
programming support. The Al models were accessed through structured system prompts tailored to each
scaffolding module—Solution Assessment (SA), Code Assessment (CA), and Free Interaction (FI). Prompt
configurations were designed to regulate the level of instructional support provided and to prevent direct
solution disclosure, in line with recommended practices for responsible Al use in education (Liao et al,,
2024).

For data management, PostgreSQL was used as the primary database to store interaction logs, system
responses, and progress-related records generated during internal testing. The system infrastructure was
hosted on Amazon Web Services (AWS), while system monitoring and error tracking during development
were supported using CloudWatch and Sentry. Version control and collaborative development were
managed through GitHub. System validation relied on predefined testing materials, including black-box
testing scenarios, equivalence partitioning rules, and boundary value definitions. This testing strategy is
commonly applied in software-based educational systems to assess functional correctness and output
reliability without inspecting internal code structures (Gunawan et al., 2023).

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education 87

2.2 Methods

This study adopts a Research and Development approach to design, implement, and internally validate
an Al-based scaffolding platform. The methodological focus of this research is on system development,
technical implementation, and functional validation, rather than large-scale empirical measurement of
learning outcomes. To support iterative refinement and pedagogical alignment, the development process
was guided by Agile principles, emphasizing flexibility, incremental delivery, and responsiveness to user
feedback (Gheorghe et al., 2020; Larasati et al., 2021).

2.3 Research Design and Development Approach

The research design integrates three main components: (1) pedagogically informed system design,
(2) Agile-based iterative development, and (3) internal system validation. This integration enables
theoretical principles related to computational thinking and scaffolding to be operationalized into a
functional digital system while maintaining practical feasibility.

The Agile-inspired approach was selected to enable continuous adaptation during development
without rigid adherence to formal frameworks such as Scrum (Zhen, 2024). Development iterations were
conducted in weekly cycles, allowing incremental enhancement of system features and early identification
of design inconsistencies. This approach aligns with prior studies highlighting the effectiveness of Agile
methods in educational system development and Al-supported learning environments (Gheorghe et al,
2020; Laval et al., 2021).

2.4 Requirements Analysis and User-Centered Design

Requirements analysis was conducted through structured interviews and classroom observations
involving programming instructors and students as primary stakeholders. This phase aimed to identify
learning difficulties, interaction preferences, and pedagogical constraints associated with programming
education and Al usage. The analysis focused on four requirement dimensions: educational, user
experience, pedagogical, and technical requirements (Moon et al., 2020; Yusoff et al., 2020).

Educational requirements emphasized the need to support computational thinking development while
mitigating over-reliance on Al tools. User experience requirements addressed interface clarity, interaction
flow, and accessibility. Pedagogical constraints were defined to prevent direct solution disclosure and
encourage independent reasoning, consistent with concerns about Al dependency in educational contexts
(Tiwari, 2023). Technical requirements specified system responsiveness, performance stability, and
integration with Al services. The resulting requirements were translated into functional specifications and
interaction flows to guide system design (Weintrop etal., 2021).

2.5 Agile-Inspired Development Process

The development of the SEKAPAI platform adopted an Agile-inspired iterative process to ensure
flexibility, continuous refinement, and alignment between pedagogical objectives and technical
implementation. Instead of strictly following a formal Agile framework, this study applied core Agile
principles—incremental development, responsiveness to feedback, and iterative evaluation—to
accommodate the evolving requirements of an Al-assisted learning system. The development cycle
consisted of six recurring stages: requirements definition, design, implementation, testing, deployment, and
review. During the design stage, user interface structures, system architecture, and Al interaction scenarios
were specified for each scaffolding module, with explicit constraints imposed to prevent unrestricted Al
assistance that could undermine learning objectives.

Implementation was carried out using a modular development strategy that enabled independent
development and refinement of the Solution Assessment (SA), Code Assessment (CA), and Free Interaction
(FI) modules. Each iteration incorporated internal testing feedback to verify functional correctness,
interaction consistency, and adherence to predefined educational requirements. The review phase of each
cycle emphasized both technical stability and pedagogical behavior, particularly the appropriateness of

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

88 Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education

feedback depth and the gradual reduction of Al assistance. This iterative refinement process facilitated early
identification of design inconsistencies, supported adaptive feature evolution, and reduced the risk of scope
drift during extended development cycles, thereby providing a practical and controlled approach to
operationalizing Al-based scaffolding within programming education.

2.6 System Architecture and Technical Implementation

SEKAPAI employs a modular, three-layer architecture consisting of a client layer, backend services,
and cloud infrastructure. The client interface was developed using Nextjs with Zustand for state
management, enabling responsive interaction across devices. Backend services, implemented using Node.js
and Express, function as an API gateway coordinating communication between the client interface, database
services, and Al components.

Al-based feedback is generated through the OpenAl GPT API using structured prompts designed to
support scaffolding principles while preventing solution dependency. Core backend components include a
prompt engine, context manager, execution engine, and recommendation module, which collectively
regulate interaction flow and adjust scaffolding intensity based on user behavior. This architecture
operationalizes adaptive feedback aligned with computational thinking dimensions and the principles of
scaffolding.

3. RESULTS AND DISCUSSION
3.1 Requirements Analysis

The requirements analysis was conducted through interviews with educational stakeholders and
observations of students’ programming learning patterns. This process yielded three interrelated
categories of requirements—functional, non-functional, and educational—intended to ensure that SEKAPAI
supports Al-assisted scaffolding while maintaining learning continuity and responsible Al use. Functionally,
the platform must accept pseudocode and program code, generate Al-based feedback, support interactive
dialogue, and manage user interaction history, which is essential for tracking learning progression and
refining adaptive feedback strategies over time (Faber et al, 2024). Non-functional requirements
emphasize responsiveness, usability, cross-platform accessibility, and stable performance under
concurrent classroom use. Educational requirements focus on scaffolding-oriented learning support
through constructive feedback and the gradual promotion of learner independence, explicitly addressing
the risk of over-dependency associated with generative Al use in educational contexts (Rowlett & Corner,
2022).

To operationalize these functional, non-functional, and educational requirements, a scenario-based
interaction model was defined to illustrate how the identified requirements are enacted within the system.
Table 1 presents a representative interaction scenario in which a single programming task is addressed
through the three scaffolding modules: Solution Assessment (SA), Code Assessment (CA), and Free
Interaction (FI). The scenario demonstrates how functional requirements are implemented across modules
while educational requirements are reflected through the regulation of Al assistance levels—ranging from
conceptual reasoning without solution disclosure in SA, to implementation-focused feedback in CA, and
controlled exploratory dialogue in FI. This staged and role-specific interaction clarifies how scaffolding
intensity is progressively adjusted to foster learner independence while mitigating the risk of Al over-
dependency, thereby validating the alignment between the identified requirements and the modular design
of the SEKAPAI platform.

3.2 System Design Results

The system design phase resulted in a set of structured design artifacts that formalize the architecture,
interaction model, and learning workflow of the SEKAPAI platform. The primary design outputs comprise
the system architecture of SEKAPAI (Figure 1), the use case diagram of the SEKAPAI system (Figure 2), the
activity diagram of the SEKAPAI learning workflow (Figure 3), and the sequence diagram of SEKAPAI

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education 89

modules (Figure 4). Collectively, these artifacts delineate the functional scope, interaction logic, and
pedagogical flow of the platform across its three core modules: Solution Assessment (SA), Code Assessment
(CA), and Free Interaction (FI).

Table 1. Scenario-based interaction requirements of the SEKAPAI platform

Scaffolding
Module

System --- Task as follows: Given a string containing lowercase letters and parentheses, remove
all parentheses and return the modified string. Example: input (a(b)c)d becomes abcd.

Role Interaction Description

User SA Please evaluate the following solution: Use a count variable to track the number of
opening parentheses. Iterate through each character. If character is '(’, increment count.
If)", decrement count. At the end of iteration, if count = O, then string is valid. If not,
return false.

Assistant SA Okay, I've reviewed your proposed solution. It seems like you're on the right track with
using a counter to keep track of the balance between opening and closing parentheses.
However, let's think a bit more deeply about potential edge cases and scenarios.

e Whathappens ifyou encounter a closing parenthesis before an opening one? Does
your current approach handle this situation correctly?

e Could you provide an example string that would cause your solution to return an
incorrect result? Thinking about such examples can help refine your algorithm.

e How would you handle other characters in the string besides parentheses? Should
they be ignored, or could they potentially impact the validity of the string in some
way?

Consider these questions, and let me know if you'd like to discuss further!

User CA Please evaluate the following code: public class RemoveParentheses {public static String
remove(String s) {Stack<Character> stack = new Stack<>();StringBuilder sb = new
StringBuilder();for (char c : s.toCharArray()) {if (c == '(") stack.push(c);else if (c ==")")
stack.pop();else sh.append(c);}return sb.toString();}

Assistant CA This code uses a stack to remove parentheses, but does not yet handle cases of
unbalanced parentheses.

User FI What if there are unbalanced parentheses in the input?

Assistant FI Solution for handling mismatch: if (!stack.isEmpty() && stack.peek() == (') { stack.pop();}
else { throw new lllegalArgumentException("Invalid input");}

At the architectural level, the system architecture illustrates the overall structural organization of
SEKAPA], including the client layer, backend services, and Al integration components. This structure defines
how user interactions are managed through the frontend interface, processed by backend services, and
supported by GPT-based Al feedback mechanisms. The layered design promotes modularity, scalability, and
maintainability while enabling the implementation of adaptive scaffolding strategies within the learning
environment.

From an interaction perspective, the Use Case Diagram specifies the relationships between system
actors and platform functionalities. Two primary actor groups are identified: students and administrators.
Students are provided access to all learning modules (SA, CA, and FI), profile management features, and
interaction history, whereas administrators are responsible for system configuration and maintenance.
This interaction model supports flexible learning pathways and systematic progress monitoring, which are
essential for personalized learning support in digital education environments (Raghavan et al., 2021).

The Activity Diagram of the SEKAPAI learning workflow represents the end-to-end learning process
experienced by users. The workflow begins with user authentication and dashboard access, followed by
module selection, input submission, Al-based analysis, feedback generation, interaction logging, progress
tracking, and recommendation delivery. This activity flow operationalizes adaptive learning paths and real-

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

90 Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education

time feedback mechanisms, thereby supporting individualized learning experiences and the development
of computational thinking skills (Sayed et al., 2022).

Building on this workflow representation, the Sequence Diagram details the temporal interaction
between users, system components, and GPT-based AI services. It illustrates how user inputs are
transmitted through backend services, processed by the GPT API, and returned as scaffolded feedback
across the SA, CA, and FI modules. This interaction sequence ensures consistency in inquiry handling, code
evaluation, and exploratory dialogue while preserving contextual continuity throughout the learning
process.

SEKAPAI System Architecture - High-level Diagram

Client (Frontend)
State Store
{Zustand)

Vieb Ut
(Next js, C!

hakra Uy

" [Modules), N \ \
/ = / K . \ \
fkusting&lma) |- Evaluates prablem decompasition Openended 0GA - Syntax/semantic checks ! |
| 1AWS: EC2,53, RDS, CIICD) | - Highdevel hins [na diect solutions) Free Interaction 7} ‘ Solution Assessment (53] Code Assessment (CA] L Contextual fobowup | | - Safe execution sandbor HTTPS ESTIGraphQL) fdelver feedback

[\ action, progress. logs /
Backend Services |

¢ [e [a]
| ,
; 9'*““ SITAN \ User DB fuery student performance Rec & Adaptation APl Gateway
{ (GPT-35/ G’T':L/ \ LiPostaresn) (Graduated difficuty manager) {Node s + Express)
’ /
|\ formatted prompt sdjust dificuly scafolding level
T

s & metrics

Monitoring & Logging
(Sentry, Cloudiatch]

a

=% Prompt Engine
(Prompt templates, safety rules)

Execution Engine

Context Manager
(Code sandbox { simulatar

(Session, conversation history)

Figure 1. System architecture of SEKAPAI

SEKAPAI System

(_:-Submit Code or Answer)

select Module - SACA/FI)

~ (,,fa-?' Hégister & Lng]
.—/—’—'_f_’ o
ST T

Studenl\ (_Receive Al Feedb,
-::_ﬁevise and Resubmit Wor

 View Interaction History

7—>(j:unfigure Systeni:,)

2N
Administrator

-("_i’erfnrm Maintena

Figure 2. Use case diagram of the SEKAPAI system

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education 91

b

User opens SEKAPAI platform

v

User selects module (SA, CA, or Fi)

Y
Module = SA? Module = CA? > Module = FI7?
I s s
User inputs problem statement User submits code User types open-ended question
System generates guiding questions System analyzes code structune System responds with Al-based answer
User responds to scaffolding prompts System provides contextual feedback
System provides feedback and suggestions
v . v
Usér revises responss or code

User submits final version

&

Figure 3. Activity diagram of SEKAPAI learning workflow

S il @ (Hagiam - SEKAPA] Madile Inferaitians

friv Franbend Bkl GPT_AP1 Database Codevalideter EmecutionEngist Comtemthlanager

{54 Maduie [Boletmn dusessment) |

1 Subrit problern statemers

3 Regueyt wCaflpidng prosetsy -
@ Mgtk rplated contaat (il arvg)
R
& Connemtual ik
g Y Contentuai irde
¥ BTG respone

o T Format med debens cesponie
o W DALY Gt Qs] i b

I'ca mosus iCets Axsessamarth |
1 SA Modds (Cede

B Sulyimil coxls .

10 Arawy e wyreas and ge

g LA AL Corsintual Atk

A3 Bun code smudai on

o V3 Ptum cutputinmmony
Tl Froedbac baned on results
o V5 Prep s resganas
- Tl Shvowr srecttured feedbach

—_—
i Module (Fres
B

1T Sand opes gueition "

Ferweard qi
i L .

A Prargt 1 LLM)

20 Mptarve chat heilary | pris ilate
_(?I Tonteat data
o 32 PEpERsE mith ptinneed conlast
PFack
- B Faciage senky

o M Dy Al e

e+ Fravtnd B GFT_AP1 Datsbase Codevalidater || EmecutionEngie | Comtasthlanager

Figure 4. Sequence diagram of SEKAPAI modules

3.3 Validation Results

System validation results were obtained through comprehensive black-box testing, in which each
scenario evaluated system functionality, feedback quality, and alignment with computational thinking
development. Testing was organized around core system features and scaffolding modules, with expected
and actual outcomes documented and summarized in Table 2. The results indicate that essential system
functions (e.g., sign up and sign in) and module-level behaviors across Solution Assessment (SA), Code

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

92 Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education

Assessment (CA), and Free Interaction (FI) consistently achieved a Pass status. Importantly, the educational
impact of each scenario is explicitly mapped to computational thinking components—such as
decomposition, abstraction, debugging, and pattern recognition—as well as to responsible Al-use
behaviors, including the redirection of direct solution-seeking attempts toward scaffolded guidance.

Beyond functional correctness, the validation results demonstrate the system’s adaptive scaffolding
capabilities. The testing outcomes show that SEKAPAI is able to differentiate between novice and
intermediate input cases, regulate feedback depth accordingly, and promote learner independence through
progressive adjustment of assistance. In particular, the Code Assessment module achieved over 95%
functional accuracy in syntax recognition and response delivery, indicating technical robustness.
Collectively, these findings provide evidence of the platform’s technical feasibility and pedagogical
alignment, while establishing a foundation for subsequent pilot testing with 5-10 students using
standardized usability and user experience instruments such as SUS and UEQ.

Table 2. Black-box testing results of the SEKAPAI platform

Feature / Test Educational
ID Description Expected Result Actual Result Status
Module . Impact
(Scenario)
TC- Sign Up User User account is Account created Pass Enables
SGNUP registration created successfully and confirmation personalized
using a valid email delivered interaction
email address tracking
TC- Sign In User login with ~ User successfully Dashboard Pass Supports
SGNIN valid accesses the loaded and continuity of
credentials dashboard session activated learning
activities
TC-SA- Solution Submission of System provides Constructive Pass Supports
01 Assessment pseudocode for conceptual feedback feedback on decomposition
(sA) a sorting on solution logic algorithmic and abstraction
algorithm structure
generated
TC-SA- Solution Submission of System prompts Scaffolded Pass Encourages
02 Assessment an incomplete clarification while feedback reflective and
(SA) algorithm offering guidance provided without independent
description disclosing thinking
solutions
TC-CA- Code Submission of System detects Relevant Pass Enhances
01 Assessment code containing errors and provides diagnostic debugging skills
(ca) syntax errors improvement feedback
suggestions generated
TC-CA- Code Submission of System provides Constructive Pass Develops
02 Assessment functionally efficiency-oriented feedback on code algorithmic
(CA) correct but recommendations optimization efficiency
inefficient code delivered awareness
TC-FI- Free Conceptual Q&A System generates Relevant Pass Supports
01 Interaction related to contextual and explanations pattern
(FD) programming educational supporting recognition
topics responses conceptual
understanding
TC-FI- Free Attempt to System redirects Direct solutions Pass Mitigates Al
02 Interaction obtain direct interaction toward refused; guided dependency and
(FD) assignment scaffolded learning learning prompts academic
solutions provided misconduct

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education 93

3.4 Deployment and Internal Review Results

Following the completion of black-box testing, the SEKAPAI platform was deployed to a production
environment using Amazon Web Services (AWS). The deployment process involved environment
configuration, PostgreSQL database migration, OpenAl API integration with rate limiting, custom domain
and SSL certificate setup, as well as the implementation of monitoring and logging mechanisms. Deployment
results indicate that the system achieved stable operational performance, with recorded uptime reaching
99.9% and average GPT API response times remaining below 500 milliseconds. These outcomes
demonstrate the platform’s readiness to deliver reliable Al-assisted educational services under real-world
operational conditions.

In parallel with deployment, an internal review was conducted through structured trials by the
development team to assess system behavior across technical, pedagogical, and user experience
dimensions. The review observations indicate that SEKAPAI performed consistently across its core
modules, delivering timely and contextually appropriate Al-based feedback while maintaining the intended
scaffolding constraints. The interaction flow across modules was found to support guided problem-solving
without disclosing direct solutions, thereby preserving pedagogical integrity. Overall, the deployment and
internal review results confirm that SEKAPAI is technically stable, operationally viable, and aligned with its
design objective of supporting responsible Al-assisted learning prior to empirical evaluation with student
users.

3.5 Discussion

The development and internal validation of the SEKAPAI platform represent a strategic response to
the increasing integration of artificial intelligence in programming education, particularly in addressing the
pedagogical risks associated with students’ over-dependence on generative tools such as ChatGPT. This
study demonstrates that, when supported by intentional scaffolding mechanisms—namely the Solution
Assessment (SA), Code Assessment (CA), and Free Interaction (FI) modules—AI can be repositioned from a
substitute for student reasoning to a dynamic form of cognitive support. The system-generated feedback
was found to be adaptive and contextually relevant, aligning with core components of computational
thinking, including decomposition, abstraction, pattern recognition, and algorithmic design.

The findings further indicate that an iterative Agile development process plays a critical role in
maintaining both pedagogical alignment and system usability in Al-based learning environments. Unlike
linear development models, the Agile approach enabled continuous refinement based on user interaction
and internal testing, contributing to the reliability of system features and the relevance of Al-generated
feedback. This observation is consistent with prior studies reporting that Agile methodologies in
educational system development enhance learner engagement and motivation (Laval et al., 2021; Saputra
etal, 2025).

SEKAPALI’s design choice to implement graduated feedback while deliberately avoiding direct solution
provision reflects current perspectives in Al ethics and pedagogy. In line with the framework proposed by
Liao etal. (2024), which emphasizes Al systems that support rather than replace learner thinking, SEKAPAI
encourages reflection, revision, and problem-solving through guided prompts. This approach is central to
fostering learner independence. Similarly, the findings align with Faber et al. (2024), who reported that
adaptive scaffolding mechanisms improve learner engagement and reduce cognitive overload—effects that
were also observed during the internal validation phase of SEKAPAI.

The alignment between SEKAPAI’s system architecture and educational theory further supports its
long-term viability. The integration of prompt engineering, modular feedback loops, and interaction history
tracking enables a responsible Al design that promotes learner autonomy over time. Unlike conventional
black-box Al systems, where interaction is often passive and pedagogical transparency is limited, SEKAPAI
embeds instructional logic directly into its interaction design, ensuring that Al assistance remains
transparent, adaptive, and pedagogically grounded. Overall, the findings suggest that generative Al can be
pedagogically meaningful when implemented through intentional scaffolding and iterative refinement.
Beyond its immediate functional value, SEKAPAI offers a transferable design framework for learning

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

94 Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education

contexts that require critical thinking and iterative problem-solving; however, further empirical evaluation
in authentic educational settings is required to assess scalability, long-term effectiveness, and cross-
disciplinary applicability.

4. CONCLUSION

This study presented the design, development, and internal validation of SEKAPAI, an Al-based
scaffolding platform intended to support computational thinking development in programming education
while mitigating excessive reliance on generative Al tools. Developed using an Agile-oriented Research and
Development approach, SEKAPAI integrates three adaptive scaffolding modules—Solution Assessment
(SA), Code Assessment (CA), and Free Interaction (FI)—to deliver context-aware feedback aligned with
established computational thinking components. The internal validation results confirm that the system
operates reliably and successfully implements progressive scaffolding through controlled Al assistance
rather than direct solution provision.

From a systems perspective, SEKAPAI demonstrates how pedagogical scaffolding principles can be
explicitly embedded into the architecture and interaction design of an Al-assisted learning platform. The
modular, web-based architecture supports extensibility and potential integration with existing learning
management systems, while the adaptive fading mechanism offers a concrete strategy for balancing Al
support and learner autonomy. These characteristics position SEKAPAI as a technically feasible and
pedagogically grounded reference model for responsible Al integration in programming-related learning
contexts.

Nevertheless, this research is intentionally limited to system design and internal validation.
No empirical evaluation involving real student users has been conducted at this stage. Consequently,
learning effectiveness, usability, and user experience outcomes cannot yet be inferred. Future research will
therefore focus on pilot implementation in authentic educational settings, where usability and user
experience will be systematically evaluated using standardized instruments such as the System Usability
Scale (SUS) and User Experience Questionnaire (UEQ). Further extensions may include learning analytics,
instructor-facing dashboards, and adaptive feedback calibration mechanisms to support scalability and
cross-disciplinary application.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Chi, M. T. H,, Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring.
Cognitive Science, 25(4), 471-533. https://doi.org/10.1207 /S15516709C0G2504_1

Dela Calzada, K. P. (2024). Anti-dependency teaching strategy for innovation in the age of ai among
technology-based students. Environment and Social Psychology, 9(8).
https://doi.org/10.59429/ESP.V918.3026

Faber, T.]. E., Dankbaar, M. E. W,, van den Broek, W. W., Bruinink, L. J., Hogeveen, M., & van Merriénboer,].
J. G. (2024). Effects of adaptive scaffolding on performance, cognitive load and engagement in game-
based learning: a randomized controlled trial. BMC Medical Education, 24(1), 943-.
https://doi.org/10.1186/S12909-024-05698-3

Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A swot analysis of chatgpt: implications for
educational practice and research. Innovations in Education and Teaching International, 61(3), 460-
474 https://doi.org/10.1080/14703297.2023.2195846

Gheorghe, A.-M., Gheorghe, I. D., & Iatan, I. L. (2020). Agile software development. Informatica Economica,
24(2/2020), 90-100. https://doi.org/10.24818/issn14531305/24.2.2020.08

Gunawan, R., Wibisono, Y. P., Primasari, C. H., Budiyanto, D., & Cininta, M. (2023). Blackbox testing on virtual
reality gamelan saron using equivalence partition method. Jurnal Buana Informatika, 14(01), 11-19.
https://doi.org/10.24002/]B1.V14101.6606

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

https://doi.org/10.1207/S15516709COG2504_1
https://doi.org/10.59429/ESP.V9I8.3026
https://doi.org/10.1186/S12909-024-05698-3
https://doi.org/10.1080/14703297.2023.2195846
https://doi.org/10.24818/issn14531305/24.2.2020.08
https://doi.org/10.24002/JBI.V14I01.6606

Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education 95

Kasneci, E., Sessler, K, Kiichemann, S. Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G.,
Gilinnemann, S., Hiilllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer,]., Poquet, O.,
Sailer, M., Schmidt, A, Seidel, T., ... Kasneci, G. (2023). Chatgpt for good? on opportunities and
challenges of large language models for education. Learning and Individual Differences, 103, 102274.
https://doi.org/10.1016/].LINDIF.2023.102274

Larasati, 1., Yusril, A. N,, & Zukri, P. Al. (2021). Systematic literature review analisis metode agile dalam
pengembangan aplikasi mobile. Sistemasi: Jurnal Sistem Informasi, 10(2), 369-380.
https://doi.org/10.32520/STMSL.V1012.1237

Laval,], Fleury, A, Karami, A. B,, Lebis, A., Lozenguez, G., Pinot, R.,, & Vermeulen, M. (2021). Toward an
innovative educational method to train students to agile approaches in higher education: the a.l.p.e.s.
Education Sciences, 11(6), 267. https://doi.org/10.3390/EDUCSCI11060267

Liao, J., Zhong, L., Zhe, L., Xu, H., Liu, M., & Xie, T. (2024). Scaffolding computational thinking with chatgpt.
IEEE Transactions on Learning Technologies, 17, 1668-1682.
https://doi.org/10.1109/TLT.2024.3392896

Mhlanga, D. (2023). Open ai in education, the responsible and ethical use of chatgpt towards lifelong
learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4354422

Moon, J., Do,], Lee, D., & Choi, G. W. (2020). A conceptual framework for teaching computational thinking in
personalized oers. Smart Learning Environments 2020 7:1, 7(1), 6-. https://doi.org/10.1186/5S40561-
019-0108-Z

Nouri, J.,, Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital
competence and 21st century skills when learning programming in k-9. Education Inquiry, 11(1), 1-
17. https://doi.org/10.1080/20004508.2019.1627844

Raghavan, S, M, S, S, S, & Devi M, Dr. D. (2021). Student support system an one stop portal. International
Journal of Advanced Research in Science, Communication and Technology, 66-71.
https://doi.org/10.48175/1JARSCT-1211

Rahman, M. M,, & Watanobe, Y. (2023). Chatgpt for education and research: opportunities, threats, and
strategies. Applied Sciences, 13(9), 5783. https://doi.org/10.3390/APP13095783

Rowlett, P, & Corner, A. S. (2022). Flexible, student-centred remote learning for programming skills
development. International Journal of Mathematical Education in Science and Technology, 53(3), 619-
626. https://doi.org/10.1080/0020739X.2021.1989067

Saputra, . P. B., Prabowo, H., Gaol, F. L., & Hertono, G. F. (2025). Development of gamification-based learning
management system (Ims) with agile approach and personalization of fslsm learning style to improve
learning effectiveness. Journal of Applied Data Sciences, 6(1), 714-725.
https://doi.org/10.47738/JADS.V611.486

Sayed, W.S., Noeman, A. M., Abdellatif, A., Abdelrazek, M., Badawy, M. G., Hamed, A., & El-Tantawy, S. (2022).
Al-based adaptive personalized content presentation and exercises navigation for an effective and
engaging e-learning platform. Multimedia Tools and Applications, 82(3), 3303-3333.
https://doi.org/10.1007/S11042-022-13076-8

Tiwari, R. (2023). The integration of ai and machine learning in education and its potential to personalize
and improve student learning experiences. International Journal of Scientific Research in Engineering
and Management, 07(02). https://doi.org/10.55041/1JSREM 17645

Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: a decade of
research. Educational Psychology Review, 22(3), 271-296. https://doi.org/10.1007/S10648-010-
9127-6

Weintrop, D., Wise Rutstein, D., Bienkowski, M., & McGee, S. (2021). Assessing computational thinking: an
overview of the field. Computer Science Education, 31(2), 113-116.
https://doi.org/10.1080/08993408.2021.1918380

Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (ai)-based tool use
on students’ computational thinking skills, programming self-efficacy and motivation. Computers and
Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/].CAEAL.2023.100147

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

https://doi.org/10.1016/J.LINDIF.2023.102274
https://doi.org/10.32520/STMSI.V10I2.1237
https://doi.org/10.3390/EDUCSCI11060267
https://doi.org/10.1109/TLT.2024.3392896
https://doi.org/10.2139/SSRN.4354422
https://doi.org/10.1186/S40561-019-0108-Z
https://doi.org/10.1186/S40561-019-0108-Z
https://doi.org/10.1080/20004508.2019.1627844
https://doi.org/10.48175/IJARSCT-1211
https://doi.org/10.3390/APP13095783
https://doi.org/10.1080/0020739X.2021.1989067
https://doi.org/10.47738/JADS.V6I1.486
https://doi.org/10.1007/S11042-022-13076-8
https://doi.org/10.55041/IJSREM17645
https://doi.org/10.1007/S10648-010-9127-6
https://doi.org/10.1007/S10648-010-9127-6
https://doi.org/10.1080/08993408.2021.1918380
https://doi.org/10.1016/J.CAEAI.2023.100147

96 Development of SEKAPAI: An Al-Based Scaffolding Platform for Programming Education

Yusoff, K. M., Ashaari, N. S.,, Wook, T. S. M. T,, & Ali, N. M. (2020). Analysis on the requirements of
computational thinking skills to overcome the difficulties in learning programming. International
Journal of Advanced Computer Science and Applications, 11(3), 244-253.
https://doi.org/10.14569/1JACSA.2020.0110329

Zhen, Z. (2024). Research and practice of agile software development methods. Applied and Computational
Engineering, 114(1), 186-190. https://doi.org/10.54254 /2755-2721/2024.18284

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)

https://doi.org/10.14569/IJACSA.2020.0110329
https://doi.org/10.54254/2755-2721/2024.18284

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1 Materials
	2.2 Methods
	2.3 Research Design and Development Approach
	2.4 Requirements Analysis and User-Centered Design
	2.5 Agile-Inspired Development Process
	2.6 System Architecture and Technical Implementation

	3. RESULTS AND DISCUSSION
	3.1 Requirements Analysis
	3.2 System Design Results
	3.3 Validation Results
	3.4 Deployment and Internal Review Results
	3.5 Discussion

	4. CONCLUSION
	CONFLICT OF INTEREST
	REFERENCES

