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ABSTRACT

Urban flooding poses a growing challenge in rapidly urbanizing regions due to the combined effects
of climate variability, land-use change, and infrastructure limitations. This study proposes a hybrid
framework integrating the Fuzzy Analytical Hierarchy Process (Fuzzy-AHP), ensemble machine
learning, and sensitivity analysis to support urban flood risk assessment. Fuzzy-AHP is employed to
incorporate expert judgment and address uncertainty through triangular fuzzy numbers, while
Random Forest and XGBoost are used to capture non-linear relationships and temporal patterns in
heterogeneous flood-related data. The framework is applied to 1,008 observations from 12 districts
in Bekasi City, Indonesia, covering the period 2018-2024. Model performance indicates strong
discriminatory capability in distinguishing flood and non-flood conditions. Sensitivity analysis is
explicitly positioned as a policy-oriented diagnostic and prioritization tool, enabling the
identification of influential variables relevant for seasonal planning and early warning strategies. The
results highlight the dominant role of climate-related factors, particularly rainfall and temporal
variables, in shaping urban flood risk. Overall, the proposed framework demonstrates the
complementary integration of expert knowledge and data-driven learning, offering a transferable
methodological reference for flood risk assessment in complex urban environments.
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1. INTRODUCTION

Urban flooding has emerged as a critical and recurring natural hazard in rapidly developing cities,
driven by the combined effects of climate change, accelerated urbanization, and insufficient infrastructure
planning (Ghasemzadeh et al., 2021; Prashar et al.,, 2023). The growing frequency and severity of urban
flood events pose substantial challenges for municipal governance, often resulting in significant economic
losses, social disruption, and environmental degradation. These risks are inherently complex, as urban
flooding is shaped by the interaction of hydrological processes, environmental conditions, and socio-
economic dynamics, which are difficult to represent using conventional assessment approaches (Huang &
Wang, 2025; Zhou et al.,, 2025). This complexity is particularly pronounced in developing countries, where
high population density, rapid land-use transformation, and limited adaptive capacity amplify flood
vulnerability. In Indonesia, metropolitan areas such as Bekasi exemplify this challenge, facing compounded
risks from internal factors, including land subsidence and inadequate drainage systems, as well as external
pressures such as upstream flood inflows (Yuanita & Sagala, 2025).
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In response to these challenges, flood risk assessment methodologies have progressively shifted from
single-criterion or static approaches toward integrated multi-criteria frameworks. The Analytical Hierarchy
Process (AHP) has been widely adopted for urban flood vulnerability mapping, including applications in
Indonesia (Mujib et al.,, 2021; Perdinan et al., 2023), Brazil and India (Pimenta et al., 2025; Sar et al., 2025),
due to its structured decision-making capabilities. However, conventional AHP is limited by its reliance on
precise judgments and its sensitivity to subjectivity and uncertainty in expert assessments. To address these
limitations, fuzzy logic has been incorporated into AHP, enabling the use of linguistic variables and
improving robustness in pairwise comparisons (Toth & Vacik, 2018; Wieckowski et al., 2024). Empirical
studies indicate that Fuzzy-AHP enhances flood risk assessment by better accommodating uncertainty and
imprecision (Benaiche etal., 2025; Cikmaz et al., 2025; Demirel et al., 2025). Nevertheless, most Fuzzy-AHP-
based models remain largely static and continue to depend on expert-defined weighting schemes,
restricting their ability to capture dynamic environmental changes and complex interdependencies among
flood-related factors.

To overcome these constraints, recent research has increasingly explored the integration of multi-
criteria decision-making techniques with machine learning models for flood risk assessment (Ekmekcioglu
etal, 2021; He etal, 2025; Hidayatulloh & Bahrawi, 2025). Machine learning methods are particularly well
suited for identifying non-linear relationships and temporal patterns within large and heterogeneous
datasets. Despite this potential, machine learning is often employed primarily as a predictive component,
with limited conceptual clarity regarding its analytical complementarity to expert-based weighting
approaches. As a result, the added analytical value of machine learning within hybrid flood risk frameworks
is not always explicitly articulated, which may weaken methodological transparency and theoretical
coherence.

Beyond model integration, another notable limitation in existing studies concerns the role of
sensitivity analysis. Sensitivity analysis is commonly applied as a post-hoc diagnostic technique to assess
how variations in individual input parameters affect model outputs (Xu et al., 2024). When sensitivity
analysis is treated merely as an auxiliary evaluation step without influencing analytical interpretation or
decision support, discrepancies can arise between stated methodological claims and actual implementation.
Positioning sensitivity analysis as a policy-oriented prioritization and diagnostic instrument—rather than
solely as a validation tool—remains insufficiently explored, particularly in the context of seasonal flood
management and early warning systems in urban environments.

Addressing these methodological gaps, this study proposes a hybrid urban flood risk assessment
framework that integrates Fuzzy-AHP, ensemble machine learning, and sensitivity analysis. Fuzzy-AHP is
employed to systematically incorporate expert knowledge while accounting for uncertainty through
triangular fuzzy numbers. Ensemble machine learning models, namely Random Forest and XGBoost, are
used to analyze historical flood-related data and capture dynamic, non-linear relationships among
environmental and socio-economic variables. Random Forest is selected for its robustness in handling noisy
and heterogeneous inputs, whereas XGBoost is utilized to model complex interactions and temporal effects.
Importantly, the joint use of these models is intended to support methodological triangulation rather than
performance maximization alone. Sensitivity analysis is explicitly framed as a policy-relevant prioritization
tool, enabling the identification of influential parameters to inform targeted mitigation strategies and
seasonal flood preparedness. This integrated design ensures conceptual consistency between expert-driven
judgment, data-driven learning, and decision-oriented analysis within a unified flood risk assessment
framework.

Accordingly, this study aims to: (1) develop a conceptually coherent hybrid framework for urban flood
risk assessment that integrates Fuzzy-AHP and ensemble machine learning; (2) clarify the complementary
analytical roles of expert-based weighting and data-driven learning within flood risk analysis; and
(3) operationalize sensitivity analysis as a diagnostic and prioritization mechanism for policy-oriented
decision support. The study is guided by the following research questions: How does the integration of Fuzzy-
AHP and ensemble machine learning enhance analytical robustness in urban flood risk assessment? and How
can sensitivity-based prioritization support seasonal planning and early warning strategies in flood-prone
urban areas?.

JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)



Hybrid Fuzzy-AHP and Machine Learning with Sensitivity Analysis for Urban Flood Risk Assessment 143

2. MATERIALS AND METHODS
2.1 Materials

The empirical study was conducted in Bekasi City, Indonesia, a rapidly urbanizing metropolitan area
that is highly vulnerable to recurrent flooding due to climate variability, land subsidence, and upstream
hydrological pressures. The dataset comprises 1,008 observations collected from 12 districts during the
period 2018-2024, providing sufficient spatial and temporal coverage for urban flood risk modeling.

The study utilizes both primary and secondary data sources. Secondary quantitative data were
obtained from authoritative national and local agencies. Meteorological variables, including monthly
rainfall, were sourced from the Meteorological, Climatological, and Geophysical Agency (BMKG). Flood
occurrence records were obtained from the Regional Disaster Management Agency (BPBD). Spatial and
physical-environmental data, such as land cover, topography, and distance to rivers, were derived from the
Geospatial Information Agency (BIG). Socio-economic indicators, including population density and
economic activity, were obtained from Statistics Indonesia (BPS). Data reliability was ensured through
cross-validation with historical flood reports and available field survey records.

The input variables were grouped into three main categories reflecting the multidimensional nature
of urban flood risk. Climate-related variables include monthly rainfall (mm), climate variability indices, and
external flood events represented as binary indicators. Physical-environmental variables consist of land
cover percentage, groundwater subsidence rate (cm/year), distance to river networks (meters), and
topography classified based on elevation. Socio-economic variables include population density
(persons/km?), drainage infrastructure condition expressed as a quality index, and economic activity
indicators. The target variable is flood occurrence, defined as a binary outcome indicating the presence or
absence of flooding within a given district and time period.

In addition to quantitative data, expert knowledge was incorporated to support the multi-criteria
decision-making component of the study. Expert input was collected through Focus Group Discussions
involving five experts with backgrounds in hydrology, environmental engineering, and urban planning.
These experts contributed to the formulation of the hierarchical decision structure and provided pairwise
comparison judgments for the Fuzzy-AHP analysis.

2.2 Methods

This study develops a hybrid analytical framework that integrates the Fuzzy Analytical Hierarchy
Process (Fuzzy-AHP), ensemble machine learning, and sensitivity analysis to support urban flood risk
assessment. The overall research workflow, illustrated in Figure 1, consists of sequential stages including
data collection, expert-based weighting, data preprocessing, machine learning modeling, and sensitivity
analysis. This structured workflow is designed to ensure methodological rigor and conceptual coherence
between expert judgment, data-driven learning, and decision-oriented analysis.

Literature Study / Indicator
Identification
Indicator validation by 5 experts
Preparation of pairwise
comparison questionnaire
* Determination of Fuzzy-AHP
hierarchical structure

Sensitivity Analysis
* Single parameter perturbation (310%)
« Calculation of risk changes
+ Identification of critical parameters
* Ranking of the most sensitive variables

.

t
Data Collection MACHINE LEARNING
* Primary Data: Expert
questionnaire Random Forest XGBoost
« Secondary Data: BMKG, BPBD, * n_estimators = 100 * n_estimators = 100
BIG. BPS * max_depth = 10 * max_depth=6
¥ —

Fuzzy-AHP Analysis
Triangular fuzzy
Pairwise comparison
Consistency check

Weight calculation (CR < 0.1)
¥

Model Evaluation
* Accuracy, Fl-Score, AUC
* Cross-validation (5-fold)
* Feature importance

t

Fuzzy-AHP Weight Integration
* Weighting ML features

* Creating weighted features

* Normalizing global weights

Preprocessing
« Data cleaning & encoding
* Feature scaling (StandardScaler)
+ Handling missing values
+ Train-test split (70-30)

Figure 1. Research methodology
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Fuzzy-AHP was first applied to derive relative importance weights for flood-related variables under
uncertainty. A three-level hierarchical structure was developed based on expert discussions, consisting of
the overall goal of urban flood risk assessment, three main criteria (climate, physical environment, and
socio-economic factors), and their respective sub-criteria. Expert preferences were elicited using pairwise
comparison questionnaires based on the Saaty scale (1-9) (Liu, 2022). To account for uncertainty and
subjectivity in expert judgment, the crisp Saaty scale values were converted into triangular fuzzy numbers
following established fuzzy AHP procedures (Coffey & Claudio, 2021). The fuzzy membership function and
scale conversion are defined in Equations (1) and (2).

&;; = (L myj,wj) (1)
1= (1,1,1),2=(123),3=(234),..,9=(8,9,9) (2)

The consistency of expert judgments was evaluated using the Consistency Ratio (CR), calculated using
Equation (3), where the Random Index (RI) depends on the size of the comparison matrix. A CR value below
0.1 was considered acceptable, indicating consistent judgments. Fuzzy weights were computed using the
geometric mean method (Equation 4), and defuzzification was performed using the centroid method to
obtain crisp weights suitable for integration with machine learning models.
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Prior to machine learning modeling, data preprocessing was conducted to ensure data quality and
methodological rigor. Missing values were handled using k-nearest neighbor (KNN) imputation. Categorical
variables were encoded based on their characteristics, with flood occurrence and external flood events
binarized, district and month variables label-encoded, and topography encoded ordinally according to
elevation. Numerical features were normalized using standardization based on the StandardScaler
formulation (Equation 5). The dataset was then divided into training and testing subsets using a 70:30
stratified split on the target variable to preserve class distribution.

(5)
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The crisp weights obtained from the Fuzzy-AHP analysis were integrated into the machine learning
feature set through weighted feature engineering (Equation 6). This approach ensures that variables
identified as more important by expert judgment exert proportionally greater influence during model
learning, while still allowing the models to capture data-driven relationships.

Xweighted =XXW (6)

Two ensemble machine learning algorithms, Random Forest and XGBoost, were employed to model
urban flood risk. The use of machine learning in this study is intended to complement expert-based
weighting by capturing complex non-linear relationships and interaction effects among heterogeneous
flood-related variables. Random Forest was selected for its robustness to noise, ability to handle high-
dimensional data, and stable generalization performance in environmental modeling contexts (Khumaidi et
al., 2024). The Random Forest model is configured with parameters including (n_estimators = 100) to
ensure sufficient ensemble diversity, (max_depth = 10) to control model complexity, and
(min_samples_split = 5) to prevent overly specific node partitioning.

XGBoost is employed as a representative boosting-based ensemble algorithm with high predictive
capacity and efficient optimization. Unlike Random Forest, which relies on independent tree construction,
XGBoost builds trees sequentially by minimizing a regularized objective function, enabling the model to
capture complex non-linear interactions and subtle temporal patterns within the data. In this study,
XGBoost is justified as a high-capacity learner designed to identify intricate relationships and interaction
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effects among flood-related variables that may not be captured through expert-based weighting or bagging-
based ensembles alone. The XGBoost model is configured with (n_estimators = 100), (max_depth = 6) to
balance expressiveness and generalization, and (learning_rate = 0.1) to ensure stable convergence during
training. Both models were initialized with a fixed random state to ensure reproducibility. Model
performance was evaluated using accuracy, precision, recall, F1-score, and AUC-ROC metrics, with the
F1-score emphasized due to moderate class imbalance. Model robustness was further assessed using 5-fold
stratified cross-validation.

Feature importance analysis was conducted to examine the contribution of individual variables to
model predictions. Random Forest feature importance was derived using the mean decrease in impurity,
while XGBoost employed gain-based importance metrics. The comparison between machine learning-
derived importance scores and Fuzzy-AHP weights was used as an internal analytical check to identify
convergence or divergence between expert judgment and data-driven patterns.

Finally, single-parameter sensitivity analysis was conducted to identify influential variables within the
flood risk system. Each input variable was independently perturbed by +10% from its baseline value while
holding other variables constant. Sensitivity was quantified using Equation (7), which measures the relative
change in predicted flood risk resulting from these perturbations (Xu et al., 2024). In this study, sensitivity
analysis is explicitly positioned as a diagnostic and policy-oriented prioritization tool, rather than as an
adaptive or self-updating modeling mechanism. The results are intended to support seasonal flood
planning, early warning strategies, and targeted mitigation measures by identifying key leverage points
within the urban flood system.

Rix—Ro
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’ Ro
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3. RESULTS AND DISCUSSION
3.1 Exploratory Data Analysis and Dataset Characteristics

The exploratory data analysis provides an overview of the key characteristics of the dataset, which
comprises 1,008 observations collected from 12 districts in Bekasi City over the period 2018-2024.
As illustrated in Figure 2, the distribution of flood occurrences indicates that 41% of the observations
correspond to flood events, while 59% represent non-flood conditions, reflecting a moderate class
imbalance in the dataset. Table 1 summarizes the descriptive statistics of the numerical variables, revealing
substantial variability across key flood-related factors. Monthly rainfall exhibits a wide range, varying from
89.1 mm to 312.5 mm, with an average of 185.4 mm, indicating pronounced spatial and temporal variability
in precipitation patterns within the study area. Climate variability, with a mean value of 2.1 and a standard
deviation of 0.8, suggests moderate fluctuations in climatic conditions throughout the observation period.

Flood Occurred
41.0%

59.0%
No Flood

Figure 2. Distribution of flood events

The correlation analysis in Table 1 reveals intriguing patterns, with rainfall showing the highest
positive correlation with flood occurrence (r = 0.68), confirming the dominance of precipitation factors in
flood genesis in urban areas (Tierolf et al., 2021). Conversely, land cover shows a significant negative
correlation (r = -0.61), emphasizing the crucial role of vegetation and green spaces in flood mitigation
through increased infiltration and reduced runoff (Taskin & Manioglu, 2024). Groundwater subsidence
JUSIFO (jurnal sistem informasi), Vol. 11, No. 2 (2025)
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shows a moderate positive correlation (r

especially in low-elevation areas.

0.59), indicating its contribution to water accumulation,

Table 1. Descriptive statistics of numerical variables in the dataset

Variable Mean StdDev Min Max Correlation with Flood
Rainfall (mm) 185.4 45.2 89.1 3125 0.68
Climate Variability 21 0.8 1.0 4.5 0.54
Land Cover (%) 62.3 18.7 254 89.2 -0.61
Groundwater Subsidence (cm/year) 8.2 3.1 2.5 15.8 0.59
Distance to River (m) 450.3 215.6 85.2 12504  -0.52
Population Density (persons/km?) 12,580 3,450 6,250 21,500 0.48

The temporal flood occurrence patterns (Figure 3) reveal significant seasonal variations, with peak
occurrences in January and December, consistent with the monsoon rainfall pattern in Indonesia (Mulsandi
et al,, 2024). The high population density distribution (mean = 12,580 persons/km?) with a wide range
(6,250-21,500 persons/km?) reflects demographic heterogeneity across districts, contributing to variations
in social vulnerability to flood impacts.

1.0

o 1= o
kS o @

Flood Occurrence Proportion

o
N

Figure 3. Monthly flood occurrence patterns

The correlation analysis among variables (Figure 4) reveals complex relationships between flood-
causing factors. The highest positive correlation is observed between rainfall and climate variability
(r=0.91), while land cover shows a negative correlation with population density (r = -0.67), confirming the
impact of urbanization on water absorption capacity through the conversion of open land to built-up areas

(Pugara et al.,, 2021).
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Figure 4. Feature correlation matrix
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3.2 Fuzzy-AHP Weighting Results and Consistency Analysis

The Fuzzy-AHP weighting results (Figure 5) revealed a clear priority structure in flood risk
assessment. Climate factors emerged as the dominant contributor (52.78%), followed by physical
environment (33.25%) and socio-economic factors (13.96%). At the sub-criteria level, rainfall (0.1897) and
external flooding (0.1756) were identified as the most critical factors, confirming the dominance of
hydrometeorological factors in urban flooding.

Economic Activity
Drainage Infrastructure
Population Density 0.074
Topography
Distance to River 0057
Land Subsidence
Land Cover 0.164
Climate Variability 0163
External Flood 0.17f

Rainfall 0.190

f T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Global Weights

Figure 5. Fuzzy-AHP global weights

Consistency analysis (Figure 6) showed that all hierarchical levels had an aggregate Consistency Ratio
(CR) below the threshold of 0.1, indicating consistency. The indicator level (CR = 0.046), physical
environment (CR = 0.037), and socio-economic level (CR = 0.046) demonstrated high consistency across all
respondents. The aggregate matrix remained consistent (CR = 0.005), which aligns with the robust findings
of the geometric mean in handling individual inconsistencies (Mushwani et al., 2024).

010 +---- e e e

0.08 4

0.06 4
=== CR Threshold (0.1)

0.04 4

Consistency Ratio (CR)

0.02 4

0.00 -

Figure 6. Consistency ratio by hierarchy level

3.3 Performance of Integrated Machine Learning Models

The integration of Fuzzy-AHP weights with ensemble machine learning resulted in high predictive
performance, as summarized in Table 2. Both Random Forest and XGBoost achieved accuracy, F1-score, and
AUC values of 1.00 on the test dataset. These results indicate that the models were able to effectively
distinguish between flood and non-flood events within the observed dataset.

Table 2. Machine learning model performance for flood risk prediction
F1- AUC Cross-Val F1

Model Accurac Precision Recall
y Score Score (Mean # SD)

Random Forest 1.00 1.00 1.00 1.00 £ 0.00 1.00 1.00

XGBoost 1.00 1.00 1.00 1.00 £ 0.00 1.00 1.00
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It is important to clarify that the reported performance reflects the combined effect of expert-based
weighting and data-driven learning applied to a well-structured and domain-specific dataset. Prior to model
training, the dataset was partitioned into training and testing subsets, and all preprocessing steps, including
feature scaling and integration of Fuzzy-AHP weights, were conducted in accordance with the defined
modeling pipeline. This sequential process was designed to minimize the risk of information leakage
between training and testing data and to preserve methodological rigor.

To further assess model robustness, a 5-fold stratified cross-validation strategy was employed,
yielding consistent performance across folds with negligible variance. While perfect classification
performance is uncommon in real-world urban flood studies, similar outcomes have been reported in
domain-specific applications where expert-informed feature weighting is integrated with ensemble
learning techniques (He et al., 2025). Nevertheless, the authors acknowledge that such results should be
interpreted cautiously, particularly with respect to potential overfitting and dataset specificity.

The ROC curves for both models, presented in Figure 7, demonstrate strong discriminative capability
across classification thresholds. Rather than emphasizing absolute performance metrics alone, this study
focuses on the analytical consistency between expert-derived Fuzzy-AHP weights and machine learning-
based feature importance patterns. The alignment observed between these two perspectives suggests that
the integrated framework captures meaningful relationships inherent in the urban flood system.

Despite the strong performance observed, this study does not claim universal generalizability of the
trained models beyond the study area. The results are intended to demonstrate the feasibility and analytical
robustness of the proposed hybrid framework within the context of Bekasi City. Future studies are
encouraged to validate the framework using independent datasets, alternative temporal partitions, or
external urban contexts to further assess transferability and robustness.
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Figure 7. ROC curve analysis

3.4 Sensitivity Analysis and Policy Implications

Single-parameter sensitivity analysis is conducted to identify critical variables influencing urban flood
risk. The applied approach follows a systematic perturbation scheme, where each input variable is
independently increased and decreased by +10% from its baseline value while other variables are held
constant. Sensitivity is quantified using Equation (7), which measures the relative change in predicted flood
risk in response to perturbations of individual input parameters. This method is widely used to evaluate the
influence of specific variables on model outputs and to support interpretative analysis of complex systems
(Xu etal, 2024).

In this study, sensitivity analysis is explicitly positioned as a diagnostic and policy-oriented
prioritization tool, rather than as a component of an adaptive or self-updating modeling mechanism. The
analysis is conducted after model development and evaluation, and its primary purpose is to identify
leverage points that are most relevant for decision-making, seasonal planning, and early warning strategies.

The sensitivity results, summarized in Table 3, indicate that temporal variables, particularly
Month_encoded, exhibit the highest sensitivity score, followed by rainfall and land cover. Although the
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absolute magnitude of sensitivity values is relatively modest, with maximum changes in predicted risk
remaining below 1.5%, such values remain meaningful in urban flood management contexts, where small
variations in risk probability can have substantial cumulative impacts during repeated seasonal flood
events (Yuanita & Sagala, 2025).

The prominence of temporal variables highlights the importance of seasonality in urban flood risk
dynamics, supporting the development of preparedness measures and early warning systems that explicitly
account for monthly and seasonal patterns. Rainfall sensitivity further reinforces the dominant role of
hydrometeorological drivers, while the negative sensitivity associated with land cover emphasizes the
mitigating effect of vegetation and permeable surfaces.

From a policy perspective, sensitivity analysis functions as a prioritization mechanism, assisting
decision-makers in focusing monitoring and intervention efforts on variables with higher influence on risk
outcomes. Rather than implying direct causality, the sensitivity results provide structured guidance for
policy formulation, resource allocation, and operational flood management planning. Overall, the
integration of sensitivity analysis enhances the practical relevance of the proposed framework by
translating model outputs into actionable, policy-relevant insights, while maintaining methodological
transparency and analytical credibility.

Table 3. Sensitivity analysis results for the top 10 variables

Rank Variable Sensitivity Max Change (%) Direction of
Score Change
1 Month_encoded 0.0056 +1.37 Positive
2 Rainfall 0.0017 +0.41 Positive
3 Land Cover 0.0004 -0.10 Negative
4 Distance to River 0.0003 -0.08 Negative
5 Population Density 0.0003 +0.07 Positive
6 Groundwater Subsidence 0.0001 +0.03 Positive
7 District_encoded 0.0000 0.00 Neutral
8 Climate Variability 0.0000 0.00 Neutral
9 External Flooding 0.0000 0.00 Neutral
10 Topography_encoded 0.0000 0.00 Neutral

3.5 Discussion on Hybrid Methodology Integration

The proposed hybrid framework integrates Fuzzy-AHP and ensemble machine learning to address the
complexity of urban flood risk assessment, where uncertainty, data heterogeneity, and interacting
environmental factors pose significant analytical challenges. Fuzzy-AHP provides a structured mechanism
for incorporating expert judgment and uncertainty into multi-criteria weighting, which has been widely
adopted in flood and environmental risk studies to support transparent prioritization (Huang & Wang,
2025; Rana & Routray, 2018). In data-constrained urban contexts, such expert-based approaches remain
essential for representing local knowledge and stakeholder perspectives.

Nevertheless, expert-derived weighting methods are inherently limited in their ability to capture
complex non-linear relationships and interaction effects among flood-related variables. Previous studies
have highlighted that hierarchical multi-criteria approaches may oversimplify dynamic systems when used
in isolation (Ekmekcioglu et al., 2021; Tierolf et al.,, 2021). In response to these limitations, data-driven
machine learning techniques have been increasingly integrated into flood risk assessment frameworks to
enhance analytical depth and pattern recognition (Guan et al., 2024).

Within the proposed framework, machine learning is explicitly positioned as a complementary
analytical component rather than a replacement for Fuzzy-AHP. Ensemble models such as Random Forest
and XGBoost are capable of learning non-linear interactions, threshold effects, and temporal dependencies
directly from historical data, which cannot be fully represented through expert-based pairwise comparisons
alone. By integrating expert-derived weights into the machine learning feature space, the framework
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enables expert knowledge to guide model learning while allowing empirical data to reveal additional
interaction structures.

A key observation emerging from this hybrid integration is the divergence between expert-based
Fuzzy-AHP weights and machine learning-derived feature importance for certain variables. Such
discrepancies should not be interpreted as methodological inconsistency, but rather as an indication of
complex contextual dependencies and non-linear interactions captured through data-driven learning, as
also discussed in comparative studies of expert-based and machine learning approaches in flood risk
assessment. This divergence underscores the analytical value of combining expert judgment with empirical
modeling to obtain a more comprehensive understanding of flood risk dynamics.

The concurrent use of Random Forest and XGBoost further enhances the robustness of the framework
through methodological triangulation. While Random Forest offers stability and robustness under
heterogeneous and noisy data conditions, boosting-based approaches such as XGBoost provide higher
capacity for modeling complex non-linear relationships. Employing multiple ensemble strategies reduces
dependence on a single modeling assumption and aligns with recent recommendations for improving
robustness and interpretability in flood risk modeling.

Importantly, the contribution of machine learning within this framework should not be evaluated
solely in terms of predictive performance. Its primary added value lies in enriching analytical interpretation,
validating or challenging expert-based assumptions, and revealing interaction effects that support more
informed planning and policy decisions. By explicitly defining the complementary roles of Fuzzy-AHP and
ensemble machine learning, the proposed framework avoids redundancy and clarifies its methodological
contribution to urban flood risk assessment.

4. CONCLUSION

This study proposes a hybrid framework integrating Fuzzy-AHP, ensemble machine learning, and
sensitivity analysis to support urban flood risk assessment in complex urban environments. By combining
expert-based weighting with data-driven learning, the framework addresses limitations inherent in single-
method approaches and enhances analytical interpretability.

The integration of Random Forest and XGBoost complements Fuzzy-AHP by capturing non-linear
interactions and temporal patterns that cannot be fully represented through hierarchical weighting alone.
Sensitivity analysis, explicitly positioned as a policy-oriented diagnostic and prioritization tool, provides
actionable insights for seasonal planning and early warning strategies without being interpreted as an
adaptive modeling mechanism.

The primary contribution of this study lies in the coherent methodological integration of expert
judgment, ensemble learning, and sensitivity analysis within a single analytical framework. While the
findings are based on a localized urban dataset, the proposed approach offers a transferable methodological
reference for flood risk assessment in developing urban contexts. Future research may focus on validating
the framework using independent datasets and broader geographic settings.
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