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ABSTRACT 

Urban flooding poses a growing challenge in rapidly urbanizing regions due to the combined effects 
of climate variability, land-use change, and infrastructure limitations. This study proposes a hybrid 
framework integrating the Fuzzy Analytical Hierarchy Process (Fuzzy-AHP), ensemble machine 
learning, and sensitivity analysis to support urban flood risk assessment. Fuzzy-AHP is employed to 
incorporate expert judgment and address uncertainty through triangular fuzzy numbers, while 
Random Forest and XGBoost are used to capture non-linear relationships and temporal patterns in 
heterogeneous flood-related data. The framework is applied to 1,008 observations from 12 districts 
in Bekasi City, Indonesia, covering the period 2018–2024. Model performance indicates strong 
discriminatory capability in distinguishing flood and non-flood conditions. Sensitivity analysis is 
explicitly positioned as a policy-oriented diagnostic and prioritization tool, enabling the 
identification of influential variables relevant for seasonal planning and early warning strategies. The 
results highlight the dominant role of climate-related factors, particularly rainfall and temporal 
variables, in shaping urban flood risk. Overall, the proposed framework demonstrates the 
complementary integration of expert knowledge and data-driven learning, offering a transferable 
methodological reference for flood risk assessment in complex urban environments. 
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1. INTRODUCTION 

 Urban flooding has emerged as a critical and recurring natural hazard in rapidly developing cities, 

driven by the combined effects of climate change, accelerated urbanization, and insufficient infrastructure 

planning (Ghasemzadeh et al., 2021; Prashar et al., 2023). The growing frequency and severity of urban 

flood events pose substantial challenges for municipal governance, often resulting in significant economic 

losses, social disruption, and environmental degradation. These risks are inherently complex, as urban 

flooding is shaped by the interaction of hydrological processes, environmental conditions, and socio-

economic dynamics, which are difficult to represent using conventional assessment approaches (Huang & 

Wang, 2025; Zhou et al., 2025). This complexity is particularly pronounced in developing countries, where 

high population density, rapid land-use transformation, and limited adaptive capacity amplify flood 

vulnerability. In Indonesia, metropolitan areas such as Bekasi exemplify this challenge, facing compounded 

risks from internal factors, including land subsidence and inadequate drainage systems, as well as external 

pressures such as upstream flood inflows (Yuanita & Sagala, 2025). 
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 In response to these challenges, flood risk assessment methodologies have progressively shifted from 

single-criterion or static approaches toward integrated multi-criteria frameworks. The Analytical Hierarchy 

Process (AHP) has been widely adopted for urban flood vulnerability mapping, including applications in 

Indonesia (Mujib et al., 2021; Perdinan et al., 2023), Brazil and India (Pimenta et al., 2025; Sar et al., 2025), 

due to its structured decision-making capabilities. However, conventional AHP is limited by its reliance on 

precise judgments and its sensitivity to subjectivity and uncertainty in expert assessments. To address these 

limitations, fuzzy logic has been incorporated into AHP, enabling the use of linguistic variables and 

improving robustness in pairwise comparisons (Toth & Vacik, 2018; Wieckowski et al., 2024). Empirical 

studies indicate that Fuzzy-AHP enhances flood risk assessment by better accommodating uncertainty and 

imprecision (Benaiche et al., 2025; Cikmaz et al., 2025; Demirel et al., 2025). Nevertheless, most Fuzzy-AHP-

based models remain largely static and continue to depend on expert-defined weighting schemes, 

restricting their ability to capture dynamic environmental changes and complex interdependencies among 

flood-related factors. 

 To overcome these constraints, recent research has increasingly explored the integration of multi-

criteria decision-making techniques with machine learning models for flood risk assessment (Ekmekcioğlu 

et al., 2021; He et al., 2025; Hidayatulloh & Bahrawi, 2025). Machine learning methods are particularly well 

suited for identifying non-linear relationships and temporal patterns within large and heterogeneous 

datasets. Despite this potential, machine learning is often employed primarily as a predictive component, 

with limited conceptual clarity regarding its analytical complementarity to expert-based weighting 

approaches. As a result, the added analytical value of machine learning within hybrid flood risk frameworks 

is not always explicitly articulated, which may weaken methodological transparency and theoretical 

coherence. 

 Beyond model integration, another notable limitation in existing studies concerns the role of 

sensitivity analysis. Sensitivity analysis is commonly applied as a post-hoc diagnostic technique to assess 

how variations in individual input parameters affect model outputs (Xu et al., 2024). When sensitivity 

analysis is treated merely as an auxiliary evaluation step without influencing analytical interpretation or 

decision support, discrepancies can arise between stated methodological claims and actual implementation. 

Positioning sensitivity analysis as a policy-oriented prioritization and diagnostic instrument—rather than 

solely as a validation tool—remains insufficiently explored, particularly in the context of seasonal flood 

management and early warning systems in urban environments. 

 Addressing these methodological gaps, this study proposes a hybrid urban flood risk assessment 

framework that integrates Fuzzy-AHP, ensemble machine learning, and sensitivity analysis. Fuzzy-AHP is 

employed to systematically incorporate expert knowledge while accounting for uncertainty through 

triangular fuzzy numbers. Ensemble machine learning models, namely Random Forest and XGBoost, are 

used to analyze historical flood-related data and capture dynamic, non-linear relationships among 

environmental and socio-economic variables. Random Forest is selected for its robustness in handling noisy 

and heterogeneous inputs, whereas XGBoost is utilized to model complex interactions and temporal effects. 

Importantly, the joint use of these models is intended to support methodological triangulation rather than 

performance maximization alone. Sensitivity analysis is explicitly framed as a policy-relevant prioritization 

tool, enabling the identification of influential parameters to inform targeted mitigation strategies and 

seasonal flood preparedness. This integrated design ensures conceptual consistency between expert-driven 

judgment, data-driven learning, and decision-oriented analysis within a unified flood risk assessment 

framework. 

 Accordingly, this study aims to: (1) develop a conceptually coherent hybrid framework for urban flood 

risk assessment that integrates Fuzzy-AHP and ensemble machine learning; (2) clarify the complementary 

analytical roles of expert-based weighting and data-driven learning within flood risk analysis; and  

(3) operationalize sensitivity analysis as a diagnostic and prioritization mechanism for policy-oriented 

decision support. The study is guided by the following research questions: How does the integration of Fuzzy-

AHP and ensemble machine learning enhance analytical robustness in urban flood risk assessment? and How 

can sensitivity-based prioritization support seasonal planning and early warning strategies in flood-prone 

urban areas?. 
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2. MATERIALS AND METHODS 

2.1 Materials 

 The empirical study was conducted in Bekasi City, Indonesia, a rapidly urbanizing metropolitan area 

that is highly vulnerable to recurrent flooding due to climate variability, land subsidence, and upstream 

hydrological pressures. The dataset comprises 1,008 observations collected from 12 districts during the 

period 2018–2024, providing sufficient spatial and temporal coverage for urban flood risk modeling. 

 The study utilizes both primary and secondary data sources. Secondary quantitative data were 

obtained from authoritative national and local agencies. Meteorological variables, including monthly 

rainfall, were sourced from the Meteorological, Climatological, and Geophysical Agency (BMKG). Flood 

occurrence records were obtained from the Regional Disaster Management Agency (BPBD). Spatial and 

physical-environmental data, such as land cover, topography, and distance to rivers, were derived from the 

Geospatial Information Agency (BIG). Socio-economic indicators, including population density and 

economic activity, were obtained from Statistics Indonesia (BPS). Data reliability was ensured through 

cross-validation with historical flood reports and available field survey records. 

 The input variables were grouped into three main categories reflecting the multidimensional nature 

of urban flood risk. Climate-related variables include monthly rainfall (mm), climate variability indices, and 

external flood events represented as binary indicators. Physical-environmental variables consist of land 

cover percentage, groundwater subsidence rate (cm/year), distance to river networks (meters), and 

topography classified based on elevation. Socio-economic variables include population density 

(persons/km²), drainage infrastructure condition expressed as a quality index, and economic activity 

indicators. The target variable is flood occurrence, defined as a binary outcome indicating the presence or 

absence of flooding within a given district and time period. 

 In addition to quantitative data, expert knowledge was incorporated to support the multi-criteria 

decision-making component of the study. Expert input was collected through Focus Group Discussions 

involving five experts with backgrounds in hydrology, environmental engineering, and urban planning. 

These experts contributed to the formulation of the hierarchical decision structure and provided pairwise 

comparison judgments for the Fuzzy-AHP analysis. 

 

2.2 Methods 

 This study develops a hybrid analytical framework that integrates the Fuzzy Analytical Hierarchy 

Process (Fuzzy-AHP), ensemble machine learning, and sensitivity analysis to support urban flood risk 

assessment. The overall research workflow, illustrated in Figure 1, consists of sequential stages including 

data collection, expert-based weighting, data preprocessing, machine learning modeling, and sensitivity 

analysis. This structured workflow is designed to ensure methodological rigor and conceptual coherence 

between expert judgment, data-driven learning, and decision-oriented analysis. 

 

Figure 1. Research methodology 
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 Fuzzy-AHP was first applied to derive relative importance weights for flood-related variables under 

uncertainty. A three-level hierarchical structure was developed based on expert discussions, consisting of 

the overall goal of urban flood risk assessment, three main criteria (climate, physical environment, and 

socio-economic factors), and their respective sub-criteria. Expert preferences were elicited using pairwise 

comparison questionnaires based on the Saaty scale (1–9) (Liu, 2022). To account for uncertainty and 

subjectivity in expert judgment, the crisp Saaty scale values were converted into triangular fuzzy numbers 

following established fuzzy AHP procedures (Coffey & Claudio, 2021). The fuzzy membership function and 

scale conversion are defined in Equations (1) and (2). 

ά𝑖𝑗 =  (𝑙𝑖𝑗 , 𝑚𝑖𝑗 , 𝑢𝑖𝑗)  (1) 

1 =  (1,1,1), 2 = (1,2,3), 3 = (2,3,4), … , 9 = (8,9,9) (2) 

 

 The consistency of expert judgments was evaluated using the Consistency Ratio (CR), calculated using 

Equation (3), where the Random Index (RI) depends on the size of the comparison matrix. A CR value below 

0.1 was considered acceptable, indicating consistent judgments. Fuzzy weights were computed using the 

geometric mean method (Equation 4), and defuzzification was performed using the centroid method to 

obtain crisp weights suitable for integration with machine learning models. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
,      𝐶𝑅 =  

CI

𝑅𝐼
   (3)    

 

𝑟𝑖 =  (∏ 𝑎𝑖𝑗
𝑛
𝑗=1 )1/𝑛,        𝑤𝑖 =  

𝑟𝑖

∑ 𝑟𝑗
𝑛
𝑗=1

  (4) 

 

 Prior to machine learning modeling, data preprocessing was conducted to ensure data quality and 

methodological rigor. Missing values were handled using k-nearest neighbor (KNN) imputation. Categorical 

variables were encoded based on their characteristics, with flood occurrence and external flood events 

binarized, district and month variables label-encoded, and topography encoded ordinally according to 

elevation. Numerical features were normalized using standardization based on the StandardScaler 

formulation (Equation 5). The dataset was then divided into training and testing subsets using a 70:30 

stratified split on the target variable to preserve class distribution. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋−𝜇

𝜎
      (5) 

 

 The crisp weights obtained from the Fuzzy-AHP analysis were integrated into the machine learning 

feature set through weighted feature engineering (Equation 6). This approach ensures that variables 

identified as more important by expert judgment exert proportionally greater influence during model 

learning, while still allowing the models to capture data-driven relationships. 

𝑋𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  X ×  W  (6) 

 

 Two ensemble machine learning algorithms, Random Forest and XGBoost, were employed to model 

urban flood risk. The use of machine learning in this study is intended to complement expert-based 

weighting by capturing complex non-linear relationships and interaction effects among heterogeneous 

flood-related variables. Random Forest was selected for its robustness to noise, ability to handle high-

dimensional data, and stable generalization performance in environmental modeling contexts (Khumaidi et 

al., 2024). The Random Forest model is configured with parameters including (n_estimators = 100) to 

ensure sufficient ensemble diversity, (max_depth = 10) to control model complexity, and 

(min_samples_split = 5) to prevent overly specific node partitioning. 

 XGBoost is employed as a representative boosting-based ensemble algorithm with high predictive 

capacity and efficient optimization. Unlike Random Forest, which relies on independent tree construction, 

XGBoost builds trees sequentially by minimizing a regularized objective function, enabling the model to 

capture complex non-linear interactions and subtle temporal patterns within the data. In this study, 

XGBoost is justified as a high-capacity learner designed to identify intricate relationships and interaction 
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effects among flood-related variables that may not be captured through expert-based weighting or bagging-

based ensembles alone. The XGBoost model is configured with (n_estimators = 100), (max_depth = 6) to 

balance expressiveness and generalization, and (learning_rate = 0.1) to ensure stable convergence during 

training. Both models were initialized with a fixed random state to ensure reproducibility. Model 

performance was evaluated using accuracy, precision, recall, F1-score, and AUC-ROC metrics, with the  

F1-score emphasized due to moderate class imbalance. Model robustness was further assessed using 5-fold 

stratified cross-validation. 

 Feature importance analysis was conducted to examine the contribution of individual variables to 

model predictions. Random Forest feature importance was derived using the mean decrease in impurity, 

while XGBoost employed gain-based importance metrics. The comparison between machine learning–

derived importance scores and Fuzzy-AHP weights was used as an internal analytical check to identify 

convergence or divergence between expert judgment and data-driven patterns. 

 Finally, single-parameter sensitivity analysis was conducted to identify influential variables within the 

flood risk system. Each input variable was independently perturbed by ±10% from its baseline value while 

holding other variables constant. Sensitivity was quantified using Equation (7), which measures the relative 

change in predicted flood risk resulting from these perturbations (Xu et al., 2024). In this study, sensitivity 

analysis is explicitly positioned as a diagnostic and policy-oriented prioritization tool, rather than as an 

adaptive or self-updating modeling mechanism. The results are intended to support seasonal flood 

planning, early warning strategies, and targeted mitigation measures by identifying key leverage points 

within the urban flood system. 

𝑆𝑖 =  max (|
𝑅𝑖+−𝑅0

𝑅0
| , |

𝑅𝑖−−𝑅0

𝑅0
|)  (7) 

 

3. RESULTS AND DISCUSSION 

3.1 Exploratory Data Analysis and Dataset Characteristics 

 The exploratory data analysis provides an overview of the key characteristics of the dataset, which 

comprises 1,008 observations collected from 12 districts in Bekasi City over the period 2018–2024.  

As illustrated in Figure 2, the distribution of flood occurrences indicates that 41% of the observations 

correspond to flood events, while 59% represent non-flood conditions, reflecting a moderate class 

imbalance in the dataset. Table 1 summarizes the descriptive statistics of the numerical variables, revealing 

substantial variability across key flood-related factors. Monthly rainfall exhibits a wide range, varying from 

89.1 mm to 312.5 mm, with an average of 185.4 mm, indicating pronounced spatial and temporal variability 

in precipitation patterns within the study area. Climate variability, with a mean value of 2.1 and a standard 

deviation of 0.8, suggests moderate fluctuations in climatic conditions throughout the observation period. 

 

Figure 2. Distribution of flood events 

 

 The correlation analysis in Table 1 reveals intriguing patterns, with rainfall showing the highest 

positive correlation with flood occurrence (r = 0.68), confirming the dominance of precipitation factors in 

flood genesis in urban areas (Tierolf et al., 2021). Conversely, land cover shows a significant negative 

correlation (r = -0.61), emphasizing the crucial role of vegetation and green spaces in flood mitigation 

through increased infiltration and reduced runoff (Taşkın & Manioğlu, 2024). Groundwater subsidence 
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shows a moderate positive correlation (r = 0.59), indicating its contribution to water accumulation, 

especially in low-elevation areas. 

Table 1. Descriptive statistics of numerical variables in the dataset 

Variable Mean Std Dev Min Max Correlation with Flood 

Rainfall (mm) 185.4 45.2 89.1 312.5 0.68 

Climate Variability 2.1 0.8 1.0 4.5 0.54 

Land Cover (%) 62.3 18.7 25.4 89.2 -0.61 

Groundwater Subsidence (cm/year) 8.2 3.1 2.5 15.8 0.59 

Distance to River (m) 450.3 215.6 85.2 1250.4 -0.52 

Population Density (persons/km²) 12,580 3,450 6,250 21,500 0.48 

 

 The temporal flood occurrence patterns (Figure 3) reveal significant seasonal variations, with peak 

occurrences in January and December, consistent with the monsoon rainfall pattern in Indonesia (Mulsandi 

et al., 2024). The high population density distribution (mean = 12,580 persons/km²) with a wide range 

(6,250-21,500 persons/km²) reflects demographic heterogeneity across districts, contributing to variations 

in social vulnerability to flood impacts. 

 

Figure 3. Monthly flood occurrence patterns 

 

 The correlation analysis among variables (Figure 4) reveals complex relationships between flood-

causing factors. The highest positive correlation is observed between rainfall and climate variability  

(r = 0.91), while land cover shows a negative correlation with population density (r = -0.67), confirming the 

impact of urbanization on water absorption capacity through the conversion of open land to built-up areas 

(Pugara et al., 2021). 

 

Figure 4. Feature correlation matrix 
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3.2 Fuzzy-AHP Weighting Results and Consistency Analysis 

 The Fuzzy-AHP weighting results (Figure 5) revealed a clear priority structure in flood risk 

assessment. Climate factors emerged as the dominant contributor (52.78%), followed by physical 

environment (33.25%) and socio-economic factors (13.96%). At the sub-criteria level, rainfall (0.1897) and 

external flooding (0.1756) were identified as the most critical factors, confirming the dominance of 

hydrometeorological factors in urban flooding. 

 

Figure 5. Fuzzy-AHP global weights 

 

 Consistency analysis (Figure 6) showed that all hierarchical levels had an aggregate Consistency Ratio 

(CR) below the threshold of 0.1, indicating consistency. The indicator level (CR = 0.046), physical 

environment (CR = 0.037), and socio-economic level (CR = 0.046) demonstrated high consistency across all 

respondents. The aggregate matrix remained consistent (CR = 0.005), which aligns with the robust findings 

of the geometric mean in handling individual inconsistencies (Mushwani et al., 2024). 

 

Figure 6. Consistency ratio by hierarchy level 

 

3.3 Performance of Integrated Machine Learning Models 

 The integration of Fuzzy-AHP weights with ensemble machine learning resulted in high predictive 

performance, as summarized in Table 2. Both Random Forest and XGBoost achieved accuracy, F1-score, and 

AUC values of 1.00 on the test dataset. These results indicate that the models were able to effectively 

distinguish between flood and non-flood events within the observed dataset. 

Table 2. Machine learning model performance for flood risk prediction 

Model Accuracy 
F1-

Score 

AUC 

Score 

Cross-Val F1 

(Mean ± SD) 
Precision Recall 

Random Forest 1.00 1.00 1.00 1.00 ± 0.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 ± 0.00 1.00 1.00 
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 It is important to clarify that the reported performance reflects the combined effect of expert-based 

weighting and data-driven learning applied to a well-structured and domain-specific dataset. Prior to model 

training, the dataset was partitioned into training and testing subsets, and all preprocessing steps, including 

feature scaling and integration of Fuzzy-AHP weights, were conducted in accordance with the defined 

modeling pipeline. This sequential process was designed to minimize the risk of information leakage 

between training and testing data and to preserve methodological rigor. 

 To further assess model robustness, a 5-fold stratified cross-validation strategy was employed, 

yielding consistent performance across folds with negligible variance. While perfect classification 

performance is uncommon in real-world urban flood studies, similar outcomes have been reported in 

domain-specific applications where expert-informed feature weighting is integrated with ensemble 

learning techniques (He et al., 2025). Nevertheless, the authors acknowledge that such results should be 

interpreted cautiously, particularly with respect to potential overfitting and dataset specificity. 

 The ROC curves for both models, presented in Figure 7, demonstrate strong discriminative capability 

across classification thresholds. Rather than emphasizing absolute performance metrics alone, this study 

focuses on the analytical consistency between expert-derived Fuzzy-AHP weights and machine learning–

based feature importance patterns. The alignment observed between these two perspectives suggests that 

the integrated framework captures meaningful relationships inherent in the urban flood system. 

 Despite the strong performance observed, this study does not claim universal generalizability of the 

trained models beyond the study area. The results are intended to demonstrate the feasibility and analytical 

robustness of the proposed hybrid framework within the context of Bekasi City. Future studies are 

encouraged to validate the framework using independent datasets, alternative temporal partitions, or 

external urban contexts to further assess transferability and robustness. 

 

Figure 7. ROC curve analysis 

 

3.4 Sensitivity Analysis and Policy Implications 

 Single-parameter sensitivity analysis is conducted to identify critical variables influencing urban flood 

risk. The applied approach follows a systematic perturbation scheme, where each input variable is 

independently increased and decreased by ±10% from its baseline value while other variables are held 

constant. Sensitivity is quantified using Equation (7), which measures the relative change in predicted flood 

risk in response to perturbations of individual input parameters. This method is widely used to evaluate the 

influence of specific variables on model outputs and to support interpretative analysis of complex systems 

(Xu et al., 2024). 

 In this study, sensitivity analysis is explicitly positioned as a diagnostic and policy-oriented 

prioritization tool, rather than as a component of an adaptive or self-updating modeling mechanism. The 

analysis is conducted after model development and evaluation, and its primary purpose is to identify 

leverage points that are most relevant for decision-making, seasonal planning, and early warning strategies. 

 The sensitivity results, summarized in Table 3, indicate that temporal variables, particularly 

Month_encoded, exhibit the highest sensitivity score, followed by rainfall and land cover. Although the 
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absolute magnitude of sensitivity values is relatively modest, with maximum changes in predicted risk 

remaining below 1.5%, such values remain meaningful in urban flood management contexts, where small 

variations in risk probability can have substantial cumulative impacts during repeated seasonal flood 

events (Yuanita & Sagala, 2025). 

 The prominence of temporal variables highlights the importance of seasonality in urban flood risk 

dynamics, supporting the development of preparedness measures and early warning systems that explicitly 

account for monthly and seasonal patterns. Rainfall sensitivity further reinforces the dominant role of 

hydrometeorological drivers, while the negative sensitivity associated with land cover emphasizes the 

mitigating effect of vegetation and permeable surfaces. 

 From a policy perspective, sensitivity analysis functions as a prioritization mechanism, assisting 

decision-makers in focusing monitoring and intervention efforts on variables with higher influence on risk 

outcomes. Rather than implying direct causality, the sensitivity results provide structured guidance for 

policy formulation, resource allocation, and operational flood management planning. Overall, the 

integration of sensitivity analysis enhances the practical relevance of the proposed framework by 

translating model outputs into actionable, policy-relevant insights, while maintaining methodological 

transparency and analytical credibility. 

Table 3. Sensitivity analysis results for the top 10 variables 

Rank Variable Sensitivity 

Score 

Max Change (%) Direction of 

Change 

1 Month_encoded 0.0056 +1.37 Positive 

2 Rainfall 0.0017 +0.41 Positive 

3 Land Cover 0.0004 -0.10 Negative 

4 Distance to River 0.0003 -0.08 Negative 

5 Population Density 0.0003 +0.07 Positive 

6 Groundwater Subsidence 0.0001 +0.03 Positive 

7 District_encoded 0.0000 0.00 Neutral 

8 Climate Variability 0.0000 0.00 Neutral 

9 External Flooding 0.0000 0.00 Neutral 

10 Topography_encoded 0.0000 0.00 Neutral 

 
3.5 Discussion on Hybrid Methodology Integration 

 The proposed hybrid framework integrates Fuzzy-AHP and ensemble machine learning to address the 

complexity of urban flood risk assessment, where uncertainty, data heterogeneity, and interacting 

environmental factors pose significant analytical challenges. Fuzzy-AHP provides a structured mechanism 

for incorporating expert judgment and uncertainty into multi-criteria weighting, which has been widely 

adopted in flood and environmental risk studies to support transparent prioritization (Huang & Wang, 

2025; Rana & Routray, 2018). In data-constrained urban contexts, such expert-based approaches remain 

essential for representing local knowledge and stakeholder perspectives. 

 Nevertheless, expert-derived weighting methods are inherently limited in their ability to capture 

complex non-linear relationships and interaction effects among flood-related variables. Previous studies 

have highlighted that hierarchical multi-criteria approaches may oversimplify dynamic systems when used 

in isolation (Ekmekcioğlu et al., 2021; Tierolf et al., 2021). In response to these limitations, data-driven 

machine learning techniques have been increasingly integrated into flood risk assessment frameworks to 

enhance analytical depth and pattern recognition (Guan et al., 2024). 

 Within the proposed framework, machine learning is explicitly positioned as a complementary 

analytical component rather than a replacement for Fuzzy-AHP. Ensemble models such as Random Forest 

and XGBoost are capable of learning non-linear interactions, threshold effects, and temporal dependencies 

directly from historical data, which cannot be fully represented through expert-based pairwise comparisons 

alone. By integrating expert-derived weights into the machine learning feature space, the framework 
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enables expert knowledge to guide model learning while allowing empirical data to reveal additional 

interaction structures. 

 A key observation emerging from this hybrid integration is the divergence between expert-based 

Fuzzy-AHP weights and machine learning–derived feature importance for certain variables. Such 

discrepancies should not be interpreted as methodological inconsistency, but rather as an indication of 

complex contextual dependencies and non-linear interactions captured through data-driven learning, as 

also discussed in comparative studies of expert-based and machine learning approaches in flood risk 

assessment. This divergence underscores the analytical value of combining expert judgment with empirical 

modeling to obtain a more comprehensive understanding of flood risk dynamics. 

 The concurrent use of Random Forest and XGBoost further enhances the robustness of the framework 

through methodological triangulation. While Random Forest offers stability and robustness under 

heterogeneous and noisy data conditions, boosting-based approaches such as XGBoost provide higher 

capacity for modeling complex non-linear relationships. Employing multiple ensemble strategies reduces 

dependence on a single modeling assumption and aligns with recent recommendations for improving 

robustness and interpretability in flood risk modeling.  

 Importantly, the contribution of machine learning within this framework should not be evaluated 

solely in terms of predictive performance. Its primary added value lies in enriching analytical interpretation, 

validating or challenging expert-based assumptions, and revealing interaction effects that support more 

informed planning and policy decisions. By explicitly defining the complementary roles of Fuzzy-AHP and 

ensemble machine learning, the proposed framework avoids redundancy and clarifies its methodological 

contribution to urban flood risk assessment. 

 

4. CONCLUSION 

 This study proposes a hybrid framework integrating Fuzzy-AHP, ensemble machine learning, and 

sensitivity analysis to support urban flood risk assessment in complex urban environments. By combining 

expert-based weighting with data-driven learning, the framework addresses limitations inherent in single-

method approaches and enhances analytical interpretability. 

 The integration of Random Forest and XGBoost complements Fuzzy-AHP by capturing non-linear 

interactions and temporal patterns that cannot be fully represented through hierarchical weighting alone. 

Sensitivity analysis, explicitly positioned as a policy-oriented diagnostic and prioritization tool, provides 

actionable insights for seasonal planning and early warning strategies without being interpreted as an 

adaptive modeling mechanism. 

 The primary contribution of this study lies in the coherent methodological integration of expert 

judgment, ensemble learning, and sensitivity analysis within a single analytical framework. While the 

findings are based on a localized urban dataset, the proposed approach offers a transferable methodological 

reference for flood risk assessment in developing urban contexts. Future research may focus on validating 

the framework using independent datasets and broader geographic settings. 
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