PENDEKATAN “MIKiR” UNTUK MENINGKATKAN KEAKTIFAN BELAJAR DALAM PEMBELAJARAN ONLINE PADA PERKULIAHAN KIMIA ORGANIK POKOK BAHASAN SENYAWA ALDEHIDA DAN KETON

Main Article Content

Sri Mulyanti
Resi Pratiwi
Ana Mardliyah

Abstract

Organic chemistry course is a compulsory subject for chemistry education students. One of the main points of discussion is aldehyde and ketone compounds including the concept of structure, numbering, and nomenclature. With a pandemic condition that demands online lectures, the research team is trying to implement the MIKiR approach online as a solution to making organic chemistry courses interesting, student-centered, and able to achieve learning goals very well. A series of activities with the MIKiR approach have been carried out including introduction, connection, application, and reflection. The results of the evaluation showed that students mastered the concepts of aldehyde and ketone compounds very well with an average value of 80-100%, through a multiple choice test with google form media. After the implementation of the implementation of the MIKiR approach, students were given a questionnaire related to the implementation of lectures, the results of the questionnaire included 59.28% agreeing responses, 32.13% strongly agree, and 8.59% disagree with the implementation of the MIKiR approach in organic chemistry lectures. It can be concluded that the MIKiR approach can be recommended for lecturers in carrying out organic chemistry courses online.

Article Details

How to Cite
PENDEKATAN “MIKiR” UNTUK MENINGKATKAN KEAKTIFAN BELAJAR DALAM PEMBELAJARAN ONLINE PADA PERKULIAHAN KIMIA ORGANIK POKOK BAHASAN SENYAWA ALDEHIDA DAN KETON. (2021). Orbital: Jurnal Pendidikan Kimia, 5(1), 1-12. https://doi.org/10.19109/ojpk.v5i1.7460
Section
Articles

How to Cite

PENDEKATAN “MIKiR” UNTUK MENINGKATKAN KEAKTIFAN BELAJAR DALAM PEMBELAJARAN ONLINE PADA PERKULIAHAN KIMIA ORGANIK POKOK BAHASAN SENYAWA ALDEHIDA DAN KETON. (2021). Orbital: Jurnal Pendidikan Kimia, 5(1), 1-12. https://doi.org/10.19109/ojpk.v5i1.7460

References

Anzovino, M. E., & Lowery Bretz, S. (2015). Organic chemistry students’ ideas about nucleophiles and electrophiles: The role of charges and mechanisms. Chemistry Education Research and Practice, 16(4), 797–810. https://doi.org/10.1039/c5rp00113g
Austin, A. C., Ben-Daat, H., Zhu, M., Atkinson, R., Barrows, N., & Gould, I. R. (2015). Measuring student performance in general organic chemistry. Chemistry Education Research and Practice, 16(1), 168–178. https://doi.org/10.1039/c4rp00208c
Bodé, N. E., & Flynn, A. B. (2016). Strategies of Successful Synthesis Solutions: Mapping, Mechanisms, and More. Journal of Chemical Education, 93(4), 593–604. https://doi.org/10.1021/acs.jchemed.5b00900
Canelas, D. A., Hill, J. L., & Novicki, A. (2017). Cooperative learning in organic chemistry increases student assessment of learning gains in key transferable skills. Chemistry Education Research and Practice, 18(3), 441–456. https://doi.org/10.1039/c7rp00014f
Cebrián Prats, A., González Lafont, À., & Lluch, J. M. (2020). Understanding the molecular details of the mechanism that governs the oxidation of arachidonic acid catalyzed by aspirin-Acetylated cyclooxygenase-2. ACS Catalysis, 10(1), 138–153. https://doi.org/10.1021/acscatal.9b04223
Chang, Y. S., Lin, H. C., Chien, Y. H., & Yen, W. H. (2018). Effects of creative components and creative behavior on design creativity. Thinking Skills and Creativity, 29(May 2018), 23–31. https://doi.org/10.1016/j.tsc.2018.05.007
Clark, T. M., Callam, C. S., Paul, N. M., Stoltzfus, M. W., & Turner, D. (2020). Testing in the Time of COVID-19: A Sudden Transition to Unproctored Online Exams. Journal of Chemical Education, 97(9), 3413–3417. https://doi.org/10.1021/acs.jchemed.0c00546
Cooper, M. M., Stowe, R. L., Crandell, O. M., & Klymkowsky, M. W. (2019). Organic Chemistry, Life, the Universe and Everything (OCLUE): A Transformed Organic Chemistry Curriculum. Journal of Chemical Education, 96(9), 1858–1872. https://doi.org/10.1021/acs.jchemed.9b00401
Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. In Educational Research (Vol. 4). Pearson. https://doi.org/10.1017/CBO9781107415324.004
Crimmins, M. T., & Midkiff, B. (2017). High Structure Active Learning Pedagogy for the Teaching of Organic Chemistry: Assessing the Impact on Academic Outcomes. Journal of Chemical Education, 94(4), 429–438. https://doi.org/10.1021/acs.jchemed.6b00663
Curran, T. P., Mostovoy, A. J., Curran, M. E., & Berger, C. (2016). Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles. Journal of Chemical Education, 93(4), 757–761. https://doi.org/10.1021/acs.jchemed.5b00394
Dekorver, B., Chaney, A., & Herrington, D. (2020). Strategies for teaching chemistry online: A content analysis of a chemistry instruction online learning community during the time of covid-19. Journal of Chemical Education, 97(9), 2825–2833. https://doi.org/10.1021/acs.jchemed.0c00783
Duis, J. M. (2011). Organic chemistry educators’ perspectives on fundamental concepts and misconceptions: An exploratory study. Journal of Chemical Education, 88(3), 346–350. https://doi.org/10.1021/ed1007266
Eko Febri Syahputra Siregar, & Suci Perwita Sari. (2020). Optimalisasi Pendekatan MIKiR Sebagai Solusi Pembelajaran Abad 21 Bagi Guru SD Muhammadiyah Kota Medan. Dinamisia : Jurnal Pengabdian Kepada Masyarakat, 4(3), 550–556. https://doi.org/10.31849/dinamisia.v4i3.4376
Eticha, A. T. &, & Ochonogor, C. (2013). Assessment of undergraduate chemistry students’ difficulties in organic chemistry. University of South Africa, 1–12. http://uir.unisa.ac.za/handle/10500/19962
Giri, S., & Dutta, P. (2020). Identifying Challenges and Opportunities in Teaching Chemistry Online in India amid COVID-19. https://doi.org/10.1021/acs.jchemed.0c00720
Haley, R. A., Ringo, J. M., Hopgood, H., Denlinger, K. L., Das, A., & Waddell, D. C. (2018). Graduate student designed and delivered: An upper-level online course for undergraduates in green chemistry and sustainability. Journal of Chemical Education, 95(4), 560–569. https://doi.org/10.1021/acs.jchemed.7b00730
Horowitz, G., Rabin, L. a, & Brodale, D. L. (2013). Improving student performance in organic chemistry : Help seeking behaviors and prior chemistry aptitude. Journal of the Scholarship of Teaching and Learning, 13(3), 120–133.
Isnaini, M., & Ningrum, W. P. (2018). Hubungan Keterampilan Representasi Terhadap Pemahaman Konsep Kimia Oragnik. Universitas Islam Negeri Raden Fatah Palembang, 12–25.
Kaanklao, N., & Suwathanpornkul, I. (2020). Development of the learning management process to enhance the chemistry learning achievement and conceptual comprehension on organic chemistry using the posner’s approach with design-based research. Kasetsart Journal of Social Sciences, 41(2), 282–288. https://doi.org/10.1016/j.kjss.2018.07.016
Laksono, P. J. (2018). Studi Kemampuan Literasi Kimia Mahasiswa Pendidikan Kimia Pada Materi Pengelolaan Limbah. Orbital: Jurnal Pendidikan Kimia, 2(1), 1–12. https://doi.org/10.19109/ojpk.v2i1.2093
Muhammad, F., & Rusilowati, A. (2014). Penerapan Pendekatan MIKiR Materi Getaran dan Gelombang untuk Meningkatkan Literasi Sains dan Kreativitas Siswa SMP. Unnes Physics Education Journal, 3(3), 77–83.
Mulyanti, S., Kadarohman, A., Liliasari, S., & Sardjono, R. E. (2019). Survey of principles and techniques about synthesis of organic compounds and green chemistry. Journal of Physics: Conference Series, 1157(4). https://doi.org/10.1088/1742-6596/1157/4/042026
Provencher, B. A., Franco, J., Fernandez, A. L., Theberge, S., & Zwickau, B. (2020). Implementation of a 1-2-1 Curriculum and Its Effect on Organic Chemistry I. Journal of Chemical Education, 97(5), 1303–1309. https://doi.org/10.1021/acs.jchemed.9b00900
Raker, J. R., Trate, J. M., Holme, T. A., & Murphy, K. (2013). Adaptation of an instrument for measuring the cognitive complexity of organic chemistry exam items. Journal of Chemical Education, 90(10), 1290–1295. https://doi.org/10.1021/ed400373c
Ramachandran, R., & Rodriguez, M. C. (2020). Student Perspectives on Remote Learning in a Large Organic Chemistry Lecture Course. Journal of Chemical Education, 97(9), 2565–2572. https://doi.org/10.1021/acs.jchemed.0c00572
Samara, N. A. H. (2016). Effectiveness of analogy instructional strategy on undergraduate student’s acquisition of organic chemistry concepts in Mutah University, Jordan. Journal of Education and Practice, 7(8), 70–74. http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1095360&site=ehost-live
Sudarmin, S. (2013). Kemampuan Generik Sains Kesadaran Tentang Skala Sebagai Wahana Mengembangkan Praktikum Kimia Organik Berbasis Green Chemistry. Jurnal Pendidikan Dan Pembelajaran Universitas Negeri Malang, 20(1), 18–24.
Varela, C. L., Cabral, A. M. T. D. P. V., Barbosa, I. R., Costa, S. C., Silva, E. J. T., & Roleira, F. M. F. (2020). Getting the Classroom Closer to Research Work: Undergraduate Students Prepare N-Hexylcinnamamide. Journal of Chemical Education, 97(8), 2366–2369. https://doi.org/10.1021/acs.jchemed.8b00604
Yantoro. (2020). Analysis Of Teacher’s Ability In Applying Mikir Elements In Active Learning At High Classes In The Primary School. Jurnal PAJAR (Pendidikan Dan Pengajaran), 4, 356–366.