Platinum and Cobalt hydroxide – modified Platinum Electrode as Sensor for Electrochemical Oxidation of Amoxicillin

Main Article Content

Herlina Herlina
Muhammad Ali Zulfikar
Lasmaryna Sirumapea
Buchari Buchari

Abstract

Antibiotics have recently gained in popularity due to their usage in medical treatment and the process of removing them from the environment. Amoxicillin is one of the antibiotics that constitutes the study's subject. On a Pt disc electrode and a cobalt hydroxide modified-Pt electrode, the scan rate and pH in the electrochemical oxidation of amoxicillin were investigated. The voltammetry measurement's current peak revealed that changing the electrode surface could increase the electrochemical response and sensitivity of the working electrodes. The Pt/Co(OH)2 modification working electrode had a high sensitivity in the electro-oxidation determination of amoxicillin, with a linear range of the sensor of 20 to 80 M and a limit of detection of 7.15 M for the Pt disc electrode and 3.64 M for the cobalt hydroxide modified Pt electrode. The findings of determination in real samples with electro-oxidation using a modified electrode were in good agreement with a confidence level of 95 percent, according to the comparing method with HPLC.

Article Details

How to Cite
Platinum and Cobalt hydroxide – modified Platinum Electrode as Sensor for Electrochemical Oxidation of Amoxicillin. (2022). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 6(1), 213-223. https://doi.org/10.19109/alkimia.v6i1.12014
Section
Articles

How to Cite

Platinum and Cobalt hydroxide – modified Platinum Electrode as Sensor for Electrochemical Oxidation of Amoxicillin. (2022). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 6(1), 213-223. https://doi.org/10.19109/alkimia.v6i1.12014

References

[1] H. B. Ammar, M. B. Brahim, R. Abdelhédi, and Y. Samet, ‘Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation’, Separation and Purification Technology, vol. 157, pp. 9–16, Jan. 2016, doi: 10.1016/j.seppur.2015.11.027.
[2] R. Ali Fallahzadeh and F. Omidi, ‘Electro-Oxidation as an Effective Process for Removing Antibiotics and Persistent Organic Compounds Resistant to Biodegradation’, JEHSD, Dec. 2019, doi: 10.18502/jehsd.v4i4.2018.
[3] H. Q. Anh et al., ‘Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives’, Science of The Total Environment, p. 142865, Oct. 2020, doi: 10.1016/j.scitotenv.2020.142865.
[4] V. Homem and L. Santos, ‘Degradation and removal methods of antibiotics from aqueous matrices – A review’, Journal of Environmental Management, vol. 92, no. 10, pp. 2304–2347, Oct. 2011, doi: 10.1016/j.jenvman.2011.05.023.
[5] E. S. Elmolla and M. Chaudhuri, ‘Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process’, Journal of Hazardous Materials, vol. 173, no. 1–3, pp. 445–449, Jan. 2010, doi: 10.1016/j.jhazmat.2009.08.104.
[6] D. P. Santos, M. F. Bergamini, and M. V. B. Zanoni, ‘Voltammetric sensor for amoxicillin determination in human urine using polyglutamic acid/glutaraldehyde film’, Sensors and Actuators B: Chemical, vol. 133, no. 2, pp. 398–403, Aug. 2008, doi: 10.1016/j.snb.2008.02.045.
[7] P. K. Brahman, R. A. Dar, and K. S. Pitre, ‘Conducting polymer film based electrochemical sensor for the determination of amoxicillin in micellar media’, Sensors and Actuators B: Chemical, vol. 176, pp. 307–314, Jan. 2013, doi: 10.1016/j.snb.2012.09.007.
[8] M. Q. Al-Abachi, H. Haddi, and A. M. Al-Abachi, ‘Spectrophotometric determination of amoxicillin by reaction with N,N-dimethyl-p-phenylenediamine and potassium hexacyanoferrate(III)’, Analytica Chimica Acta, vol. 554, no. 1–2, pp. 184–189, Dec. 2005, doi: 10.1016/j.aca.2005.08.030.
[9] M. M. J. Al-Mudhafar, ‘Spectroscopic Study for Determination of Amoxicillin Using Cobalt(II) as Complexing Metal’, p. 7, 2009.
[10] M. Douša and R. Hosmanová, ‘Rapid determination of amoxicillin in premixes by HPLC’, Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 2, pp. 373–377, Feb. 2005, doi: 10.1016/j.jpba.2004.10.010.
[11] S. M. Foroutan, A. Zarghi, A. Shafaati, A. Khoddam, and H. Movahed, ‘Simultaneous determination of amoxicillin and clavulanic acid in human plasma by isocratic reversed-phase HPLC using UV detection’, Journal of Pharmaceutical and Biomedical Analysis, vol. 45, no. 3, pp. 531–534, Nov. 2007, doi: 10.1016/j.jpba.2007.06.019.
[12] N. Tavakoli, J. Varshosaz, F. Dorkoosh, and M. R. Zargarzadeh, ‘Development and validation of a simple HPLC method for simultaneous in vitro determination of amoxicillin and metronidazole at single wavelength’, Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 1, pp. 325–329, Jan. 2007, doi: 10.1016/j.jpba.2006.06.002.
[13] K. Yoon, S. Lee, W. Kim, J. Park, and H. Kim, ‘Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC–ESI mass spectrometry’, Journal of Chromatography B, vol. 813, no. 1–2, pp. 121–127, Dec. 2004, doi: 10.1016/j.jchromb.2004.09.018.
[14] M. Ferreira et al., ‘Study of the Electroreactivity of Amoxicillin on Carbon Nanotube‐Supported Metal Electrodes’, ChemCatChem, vol. 10, no. 21, pp. 4900–4909, Nov. 2018, doi: 10.1002/cctc.201801193.
[15] B. Rezaei and S. Damiri, ‘Electrochemistry and Adsorptive Stripping Voltammetric Determination of Amoxicillin on a Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode’, Electroanalysis, vol. 21, no. 14, pp. 1577–1586, Jul. 2009, doi: 10.1002/elan.200804571.
[16] M. Fouladgar, M. R. Hadjmohammadi, M. A. Khalilzadeh, P. Biparva, N. Teymoori, and H. Beitollah, ‘Voltammetric Determination of Amoxicillin at the Electrochemical Sensor Ferrocenedicarboxylic Acid Multi Wall Carbon Nanotubes Paste Electrode’, Int. J. Electrochem. Sci., vol. 6, p. 12, 2011.
[17] M. F. Bergamini, M. F. S. Teixeira, E. R. Dockal, N. Bocchi, and É. T. G. Cavalheiro, ‘Evaluation of Different Voltammetric Techniques in the Determination of Amoxicillin Using a Carbon Paste Electrode Modified with [N,NЈ-ethylenebis(salicylideneaminato)] oxovanadium(IV)’, Journal of The Electrochemical Society, p. 5.
[18] M. T. Carter and A. J. Bard, ‘Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA’, J. Am. Chem. Soc., vol. 109, no. 24, pp. 7528–7530, Nov. 1987, doi: 10.1021/ja00258a046.
[19] N. Daud, N. K. N. Kamaruddin, S. Sulaiman, and M. I. Syono, ‘Electrochemical Detection of Arsenic Using Modified Platinum-Cobalt Electrode’, IJCEA, vol. 7, no. 4, pp. 264–268, Aug. 2016, doi: 10.18178/ijcea.2016.7.4.586.
[20] G. Karim-Nezhad, M. Hasanzadeh, L. Saghatforoush, N. Shadjou, B. Khalilzadeh, and S. Ershad, ‘Electro-oxidation of ascorbic acid catalyzed on cobalt hydroxide-modified glassy carbon electrode’, J. Serb. Chem. Soc., vol. 74, no. 5, pp. 581–593, 2009, doi: 10.2298/JSC0905581K.
[21] M. Hasanzadeh et al., ‘Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids’, Analytical Biochemistry, vol. 389, no. 2, pp. 130–137, Jun. 2009, doi: 10.1016/j.ab.2009.03.024.
[22] R. Ojani, J.-B. Raoof, and S. Zamani, ‘A novel voltammetric sensor for amoxicillin based on nickel–curcumin complex modified carbon paste electrode’, Bioelectrochemistry, vol. 85, pp. 44–49, Jun. 2012, doi: 10.1016/j.bioelechem.2011.11.010.
[23] J. Wang, Analytical Electrochemistry (Second Edition). Erscheinungsort nicht ermittelbar: Wiley-VCH, 2000. Accessed: Feb. 19, 2020. [Online]. Available: http://onlinelibrary.wiley.com/book/10.1002/0471228230
[24] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed. New York: Wiley, 2001.
[25] S. Abbasi and S. Zadkhast, ‘Determination of Amoxicillin in Co-Amoxiclav and Urine Samples by Differential Pulse Adsorptive Stripping Voltammetry’, p. 9.
[26] A. Muhammad, N. Yusof, R. Hajian, and J. Abdullah, ‘Construction of an Electrochemical Sensor Based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk’, Sensors, vol. 16, no. 1, p. 56, Jan. 2016, doi: 10.3390/s16010056.
[27] M.-H. Chiu, J.-L. Chang, and J.-M. Zen, ‘An Analyte Derivatization Approach for Improved Electrochemical Detection of Amoxicillin’, Electroanalysis, vol. 21, no. 14, pp. 1562–1567, Jul. 2009, doi: 10.1002/elan.200904604.
[28] School of Studies in Chemistry, Jiwaji University, Gwalior (M.P.) – 474011, India and R. Jain, ‘Voltammetric Quantification of Phytoesterone 1-[5-(1, 3- Benzodioxol-5-yl)-1-oxo-2, 4-pentadienyl] Piperidine’, Int. J. Electrochem. Sci., pp. 3459–3471, Apr. 2017, doi: 10.20964/2017.04.29.
[29] M. Ferreira et al., ‘Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes’, Catalysis Today, vol. 357, pp. 322–331, Nov. 2020, doi: 10.1016/j.cattod.2019.06.039.
[30] M. M. Shoukry, ‘Potentiometric studies of binary and ternary complexes of amoxycillin’, Talanta, vol. 39, no. 12, pp. 1625–1628, Dec. 1992, doi: 10.1016/0039-9140(92)80194-I.
[31] F. Sopaj, N. Oturan, J. Pinson, F. Podvorica, and M. A. Oturan, ‘Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine’, Applied Catalysis B: Environmental, vol. 199, pp. 331–341, Dec. 2016, doi: 10.1016/j.apcatb.2016.06.035.
[32] Herlina, M. A. Zulfikar, and Buchari, ‘Electron Transfer in Electro-Oxidation of Amoxicillin Using Platinum Electrode and Platinum Modified Cobalt Electrodes’, KEM, vol. 874, pp. 155–164, Jan. 2021, doi: 10.4028/www.scientific.net/KEM.874.155.