Magnetic-Hydrochar from Galam Bark Waste (Malaleuca cajuputi) as Sasirangan Waste Adsorbent
Main Article Content
Abstract
Galam wood (Malaleuca cajuputi) is one of the woody plants that is able to grow well in the peat swamp environment of the South Kalimantan wetlands. Research on the synthesis and characterization of magnetic-hydrochar from galam bark waste for the treatment of sasirangan liquid waste has been carried out. This study aims to determine the characteristics of hydrochar and magnetic-hydrochar against the adsorption ability of sasirangan liquid waste. The results showed that the modification of galam bark into hydrochar and magnetic-hydrochar produced different characteristics based on the analysis of functional groups of infrared spectra. The surface morphology of hydrochar and magnetic-hydrochar also showed the significant differences based on scanning electron microscope (SEM) analysis. The resulting magnetic-hydrochar showed a higher adsorption ability to sasirangan waste than the hydrochar of galam bark and galam bark without modification.
Article Details
How to Cite
Magnetic-Hydrochar from Galam Bark Waste (Malaleuca cajuputi) as Sasirangan Waste Adsorbent. (2022). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 6(1), 236-243. https://doi.org/10.19109/alkimia.v6i1.13629
Section
Articles
- The author saves the copyright and gives the journal simultaneously with the license under Creative Commons Attribution License which permits other people to share the work by stating that it is firstly published in this journal.
- The author can post their work in an institutional repository or publish it in a book by by stating that it is firstly published in this journal.
- The author is allowed to post their work online (for instance, in an institutional repository or their own website) before and during the process of delivery. (see Open Access Effect).
How to Cite
Magnetic-Hydrochar from Galam Bark Waste (Malaleuca cajuputi) as Sasirangan Waste Adsorbent. (2022). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 6(1), 236-243. https://doi.org/10.19109/alkimia.v6i1.13629
References
Nasruddin, N., Nurandini, D., Halang, B., Kumalawati, R., Syaharuddin, S., Riadi, S., & Farista Aristin, N. 2018. Identifikasi Potensi Limbah Cair Zat Pewarna Sasirangan terhadap Pencemaran di Kota Banjarmasin. [online]: https://repo-dosen.ulm.ac.id//handle/123456789/16553
Khair, R. M., Prihatini, N. S., Apriani, & Primaningsih, V. 2021. Penurunan Konsentrasi Warna Limbah Cair Sasirangan Menggunakan Absorpsi Limbah Padat Lumpur-Aktif Teraktivasi Industri Karet. Jurnal Teknik Lingkungan. 7(1): 74-83. doi: 10.20527/jukung.v7i1.10822
He, X., Zhang, T., Xue, Q., Zhou, Y., Wang, H., Bolan, N. S., & Tsang, D. C. 2021. Enhanced adsorption of Cu (II) and Zn (II) from aqueous solution by polyethyleneimine modified straw hydrochar. Science of the Total Environment. 778: 146116. doi: 10.1016/j.scitotenv.2021.146116
Anggarini, E., & Muzaidi, I. 2021. Pemanfaatan Limbah Kayu Galam Barito Kuala sebagai Pengganti Agregat Kasar pada Campuran Beton. Konstruksia. 12(1): 61-68. doi: 10.24853/jk.12.1.61-68
Xue, Y., et al. 2012. Hydrogen Peroxide Modification Enhances The Ability of Biochar (Hydrochar) Produced from Hydrothermal Carbonization of Peanut Hull to Remove Aqueous Heavy Metals: Batch and Column Tests. Chemical Engineering Journal. 673-680. doi: 10.1016/j.cej.2012.06.116
Sevilla, M. & Fuertes, A. B. 2009. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon. 47(9): 2281-2289. doi: 10.1016/j.carbon.2009.04.026
Kruer-Zerhusen, N., Cantero-Tubilla, B., and Wilson, D.B. 2018. Characterization of Cellulose Crystallinity After Enzymatic Treatment Using Fourier Transform Infrared Spectroscopy (FTIR). Cellulose. 25(1): 37-48. doi: 10.1007/s10570-017-1542-0
Wang, T., Zhai, Y., Zhu, Y., Li, C. dan Zeng, G. 2018. A Riview of The Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Pshycochemical Properties. Renewable and Suistanable Energy Riviews. 90: 223-247. doi: 10.1016/j.rser.2018.03.071
Wilk, M., Magdziarz, A., Kalemba-Rec, I., dan Szymanska-Chargot, M. 2020. Upgrading of Green Waste into Carbon-rich Solid Biofuel by Hydrothermal Carbonization: The Effect of Process Parameters on Hydrochar Derived From Acacia. Energy. 202(1): 1-13. doi: 10.1016/j.energy.2020.117717
Kang, C., Zhu, L., Wang, Y., Xiao, K. dan Tian, T. 2018. Adsorption of Basic Dyes Using Walnut Shell-based Biochar Produced by Hydrothermal Carbonization. Chemichal Research in Chinese Universities. 34(4): 622-627. doi: 10.1007/S40242-018-8018-0
Cheng, J., Yue, L., Ding, L., Li, Y. Y., Ye, Q., Zhou, J., Cen, K. dan Lin, R. 2019. Improving Fermentative Hydrogen and Methane Production form an Algal Bloom Through Hydrothermal/Steam Acid Pretreatment. International Journal of Hydrogen Energy. 44(12):5812-5820. doi: 10.1016/j.ijhydene.2019.01.046
Pinheiro, N. P. F. dan Barros, N. E. L. 2020. Steam Exploxion: Hydrothermal Pretreatment in The Production of an Adsorbent Material Using Coconut Husk. Bioenergy Research. 1-10. doi: 10.1007/s12155-020-10159-y
Zhu, G., Xing, X., Wang, J. dan Zhang, X. 2017. Effect of Acid and Hydrothermal Treatments on The Dye Adsorption Properties of Biomass-Derived Activated Carbon. Journal of Material Science. 52(13): 7664-7676. doi: 10.1007/s10853-017-1055-0
Khair, R. M., Prihatini, N. S., Apriani, & Primaningsih, V. 2021. Penurunan Konsentrasi Warna Limbah Cair Sasirangan Menggunakan Absorpsi Limbah Padat Lumpur-Aktif Teraktivasi Industri Karet. Jurnal Teknik Lingkungan. 7(1): 74-83. doi: 10.20527/jukung.v7i1.10822
He, X., Zhang, T., Xue, Q., Zhou, Y., Wang, H., Bolan, N. S., & Tsang, D. C. 2021. Enhanced adsorption of Cu (II) and Zn (II) from aqueous solution by polyethyleneimine modified straw hydrochar. Science of the Total Environment. 778: 146116. doi: 10.1016/j.scitotenv.2021.146116
Anggarini, E., & Muzaidi, I. 2021. Pemanfaatan Limbah Kayu Galam Barito Kuala sebagai Pengganti Agregat Kasar pada Campuran Beton. Konstruksia. 12(1): 61-68. doi: 10.24853/jk.12.1.61-68
Xue, Y., et al. 2012. Hydrogen Peroxide Modification Enhances The Ability of Biochar (Hydrochar) Produced from Hydrothermal Carbonization of Peanut Hull to Remove Aqueous Heavy Metals: Batch and Column Tests. Chemical Engineering Journal. 673-680. doi: 10.1016/j.cej.2012.06.116
Sevilla, M. & Fuertes, A. B. 2009. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon. 47(9): 2281-2289. doi: 10.1016/j.carbon.2009.04.026
Kruer-Zerhusen, N., Cantero-Tubilla, B., and Wilson, D.B. 2018. Characterization of Cellulose Crystallinity After Enzymatic Treatment Using Fourier Transform Infrared Spectroscopy (FTIR). Cellulose. 25(1): 37-48. doi: 10.1007/s10570-017-1542-0
Wang, T., Zhai, Y., Zhu, Y., Li, C. dan Zeng, G. 2018. A Riview of The Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Pshycochemical Properties. Renewable and Suistanable Energy Riviews. 90: 223-247. doi: 10.1016/j.rser.2018.03.071
Wilk, M., Magdziarz, A., Kalemba-Rec, I., dan Szymanska-Chargot, M. 2020. Upgrading of Green Waste into Carbon-rich Solid Biofuel by Hydrothermal Carbonization: The Effect of Process Parameters on Hydrochar Derived From Acacia. Energy. 202(1): 1-13. doi: 10.1016/j.energy.2020.117717
Kang, C., Zhu, L., Wang, Y., Xiao, K. dan Tian, T. 2018. Adsorption of Basic Dyes Using Walnut Shell-based Biochar Produced by Hydrothermal Carbonization. Chemichal Research in Chinese Universities. 34(4): 622-627. doi: 10.1007/S40242-018-8018-0
Cheng, J., Yue, L., Ding, L., Li, Y. Y., Ye, Q., Zhou, J., Cen, K. dan Lin, R. 2019. Improving Fermentative Hydrogen and Methane Production form an Algal Bloom Through Hydrothermal/Steam Acid Pretreatment. International Journal of Hydrogen Energy. 44(12):5812-5820. doi: 10.1016/j.ijhydene.2019.01.046
Pinheiro, N. P. F. dan Barros, N. E. L. 2020. Steam Exploxion: Hydrothermal Pretreatment in The Production of an Adsorbent Material Using Coconut Husk. Bioenergy Research. 1-10. doi: 10.1007/s12155-020-10159-y
Zhu, G., Xing, X., Wang, J. dan Zhang, X. 2017. Effect of Acid and Hydrothermal Treatments on The Dye Adsorption Properties of Biomass-Derived Activated Carbon. Journal of Material Science. 52(13): 7664-7676. doi: 10.1007/s10853-017-1055-0