The Effect of Alkalization Duration on the Tensile Properties of Starch-Based Bioplastic Reinforced with Water Hyacinth Fiber
DOI:
https://doi.org/10.19109/559se756Keywords:
alkalization, delignification, starch-based bioplastic, tensile strength, water hyacinthAbstract
Nowadays, many researchers are studying bioplastic fabrication to address conventional plastic limitations. This study investigated the effect of water hyacinth fiber (WHF) alkalization duration on the tensile properties of produced bioplastics. The dried WHF was soaked in a 10% NaOH solution at 40°C for durations of 1, 2, 3, 4, and 5 hours. Following this, bioplastics were fabricated by mixing cassava starch (CS), WHF, and glycerol by using the melt intercalation method. FTIR characterization results revealed a strong-broad absorption band at 3288 cm-1 and a medium-sharp band at 1419 cm-1. These findings confirm the hydrogen interaction between the hydroxyl groups on the fiber surface and the matrix. The tensile strength of the bioplastics increased with the duration of WHF delignification. Notably, bioplastics fabricated with WHF delignified for 5 hours exhibited the highest tensile strength, reaching 1.349 MPa. Therefore, the duration of WHF delignification directly impacts the tensile strength of the bioplastics.
References
I. Herlina, Y. Anggraini, and E. Rizki, “Sintesis dan karakterisasi komposit polipropilena / silika berbasis abu ampas tebu,” vol. 6, no. March, pp. 16–21, 2022, doi: 10.35472/jsat.v6i1.766.
I. Aprilianti and F. Amanta, “Memajukan Keamanan Pangan pada Layanan Pesan Antar Makanan Daring di Indonesia,” Cent. Indones. Policy Stud., no. 28, p. 7, 2020, [Online]. Available: https://repository.cips-indonesia.org/publications/324009/memajukan-keamanan-pangan-pada-layanan-pesan-antar-makanan-daring-di-indonesia
C. Mastrolia et al., “Plastic Pollution: Are Bioplastics the Right Solution?,” Water, vol. 14, no. 22, p. 3596, Nov. 2022, doi: 10.3390/w14223596.
S. S. Ali et al., “Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal,” Sci. Total Environ., vol. 771, p. 144719, Jun. 2021, doi: 10.1016/j.scitotenv.2020.144719.
A. Jain, “State of Plastics Waste in Asia and the Pacific - Issues, Challenges and Circular Economic Opportunities,” 10th Reg. 3R Circ. Econ. Forum Asia Pacific (Series Webinars), no. December, p. 14, 2020, [Online]. Available: https://sdgs.un.org/sites/default/files/2020-12/UNCRD_10th 3R Forum_Webinar III-Background paper-FINAL-on Report.pdf
B. R. Mose and S. M. Maranga, “A Review on Starch Based Nanocomposites for Bioplastic Materials,” Former. part J. Mater. Sci. Eng., vol. 1, pp. 239–245, 2011.
S. Jayarathna, M. Andersson, and R. Andersson, “Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications,” Polymers (Basel)., vol. 14, no. 21, p. 4557, Oct. 2022, doi: 10.3390/polym14214557.
Z. Sydow and K. Bieńczak, “The overview on the use of natural fibers reinforced composites for food packaging,” J. Nat. Fibers, vol. 16, no. 8, pp. 1189–1200, Nov. 2019, doi: 10.1080/15440478.2018.1455621.
J. S. Santana et al., “Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal,” J. Appl. Polym. Sci., vol. 134, no. 12, Mar. 2017, doi: 10.1002/app.44637.
M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Effect of sugar palm-derived cellulose reinforcement on the mechanical and water barrier properties of sugar palm starch biocomposite films,” BioResources, vol. 11, no. 2, pp. 4134–4145, 2016, doi: 10.15376/biores.11.2.4134-4145.
H. N. Salwa, S. M. Sapuan, M. T. Mastura, and M. Y. M. Zuhri, “Life Cycle Assessment of Sugar Palm Fiber Reinforced-Sago Biopolymer Composite Takeout Food Container,” Appl. Sci., vol. 10, no. 22, p. 7951, Nov. 2020, doi: 10.3390/app10227951.
M. I. J. Ibrahim, S. M. Sapuan, E. S. Zainudin, and M. Y. M. Zuhri, “Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites,” Int. J. Biol. Macromol., vol. 139, pp. 596–604, Oct. 2019, doi: 10.1016/j.ijbiomac.2019.08.015.
P. Kanmani and J.-W. Rhim, “Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging,” Int. J. Biol. Macromol., vol. 68, pp. 258–266, Jul. 2014, doi: 10.1016/j.ijbiomac.2014.05.011.
A. Ramirez, S. Pérez, E. Flórez, and N. Acelas, “Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104776, Feb. 2021, doi: 10.1016/j.jece.2020.104776.
B. Arutselvy, G. Rajeswari, and S. Jacob, “Sequential valorization strategies for dairy wastewater and water hyacinth to produce fuel and fertilizer,” J. Food Process Eng., vol. 44, no. 2, Feb. 2021, doi: 10.1111/jfpe.13585.
E. R. Prahestiwi, A. Sadikin, and L. Saripah, “Society’s Entrepreneurship During The Pandemic Through The Water Hyacinth Handicraft in The Village of Walahar Klari Distric of West Java,” SPEKTRUM J. Pendidik. Luar Sekol., vol. 9, no. 2, p. 276, May 2021, doi: 10.24036/spektrumpls.v9i2.112702.
T. F. Rakotoarisoa, T. Richter, H. Rakotondramanana, and J. Mantilla-Contreras, “Turning a Problem Into Profit: Using Water Hyacinth (Eichhornia crassipes) for Making Handicrafts at Lake Alaotra, Madagascar,” Econ. Bot., vol. 70, no. 4, pp. 365–379, Dec. 2016, doi: 10.1007/s12231-016-9362-y.
Q. Zhang, Y. Wei, H. Han, and C. Weng, “Enhancing bioethanol production from water hyacinth by new combined pretreatment methods,” Bioresour. Technol., vol. 251, pp. 358–363, Mar. 2018, doi: 10.1016/j.biortech.2017.12.085.
Z. Wang, F. Zheng, and S. Xue, “The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production,” Sustainability, vol. 11, no. 3, p. 905, Feb. 2019, doi: 10.3390/su11030905.
S. Rezania et al., “Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater,” J. Environ. Manage., vol. 163, pp. 125–133, Nov. 2015, doi: 10.1016/j.jenvman.2015.08.018.
M. Nazir, I. Idrees, P. Idrees, S. Ahmad, Q. Ali, and A. Malik, “POTENTIAL OF WATER HYACINTH (EICHHORNIA CRASSIPES L.) FOR PHYTOREMEDIATION OF HEAVY METALS FROM WASTE WATER,” Biol. Clin. Sci. Res. J., vol. 2020, no. 1, Dec. 2020, doi: 10.54112/bcsrj.v2020i1.6.
H. N. Salwa, S. M. Sapuan, M. T. Mastura, and M. Y. M. Zuhri, “Green bio composites for food packaging,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 4, pp. 450–459, 2019, doi: 10.35940/ijrte.B1088.0782S419.
H. Abral et al., “Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers,” Starch - Stärke, vol. 70, no. 7–8, p. 1700287, Jul. 2018, doi: 10.1002/star.201700287.
K. Gopalakrishna, N. Reddy, and Y. Zhao, “Biocomposites from Biofibers and Biopolymers,” in Biofibers and Biopolymers for Biocomposites, Cham: Springer International Publishing, 2020, pp. 91–110. doi: 10.1007/978-3-030-40301-0_4.
S. H. Hamin et al., “Effect of chemical treatment on the structural, thermal, and mechanical properties of sugarcane bagasse as filler for starch‐based bioplastic,” J. Chem. Technol. Biotechnol., vol. 98, no. 3, pp. 625–632, Mar. 2023, doi: 10.1002/jctb.7218.
M. M. F. Syamsuri, H. Marzuki, D. W. A. Setiawan, R. Rusmaniar, and T. Astika, “Synthesis of Water Hyacinth/Cassava Starch Composite as An Environmentally Friendly Plastic Solution,” Equilib. J. Chem. Eng., vol. 7, no. 2, p. 137, 2023, doi: 10.20961/equilibrium.v7i2.76508.
M. Asrofi, S. M. Sapuan, R. A. Ilyas, and M. Ramesh, “Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type),” Mater. Today Proc., vol. 46, pp. 1626–1630, 2021, doi: 10.1016/j.matpr.2020.07.254.
M. Asrofi, H. Abral, Y. K. Putra, S. Sapuan, and H.-J. Kim, “Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite,” Int. J. Biol. Macromol., vol. 108, pp. 167–176, Mar. 2018, doi: 10.1016/j.ijbiomac.2017.11.165.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tri Astika, M. Mahfudz Fauzi Syamsuri, Dedi Wahyu Ari Setiawan, Rusmaniar Rusmaniar, Hasan Marzuki, Deni Agus Triawan, Ria Nurwidiyani, Hapin Afriyani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- The author saves the copyright and gives the journal simultaneously with the license under Creative Commons Attribution License which permits other people to share the work by stating that it is firstly published in this journal.
- The author can post their work in an institutional repository or publish it in a book by by stating that it is firstly published in this journal.
- The author is allowed to post their work online (for instance, in an institutional repository or their own website) before and during the process of delivery. (see Open Access Effect).