Hydrolysis Optimization of Beneng Taro Tubers (Xantoshoma undipes K. Koch) as Bioethanol Raw Material
Main Article Content
Abstract
This study conducted to assess the most appropriate method or hydrolysis of beneng taro tuber to optimize the production of bioethanol to investigate the effect of pHs, times, and temperatures on reducing sugar produced. The concentration of reducing sugar was determined using a UV-Vis spectrophotometer. The result obtained indicated that the optimum amount of reducing sugar (910,875 mg/L ) achieved at pH 10, hydrolysis time of 3 hours, and the temperature of 90 °C. Fermentation of reducing sugar using the powdered bark of raru plant produced 0,18765 % (v/v) of bioethanol and fermentation using Saccharomyces cerevisiae produced 0,2116 % (v/v) of bioethanol.
Article Details
How to Cite
Hydrolysis Optimization of Beneng Taro Tubers (Xantoshoma undipes K. Koch) as Bioethanol Raw Material. (2021). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 4(2), 58-65. https://doi.org/10.19109/alkimia.v4i2.5238
Section
Articles
- The author saves the copyright and gives the journal simultaneously with the license under Creative Commons Attribution License which permits other people to share the work by stating that it is firstly published in this journal.
- The author can post their work in an institutional repository or publish it in a book by by stating that it is firstly published in this journal.
- The author is allowed to post their work online (for instance, in an institutional repository or their own website) before and during the process of delivery. (see Open Access Effect).
How to Cite
Hydrolysis Optimization of Beneng Taro Tubers (Xantoshoma undipes K. Koch) as Bioethanol Raw Material. (2021). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 4(2), 58-65. https://doi.org/10.19109/alkimia.v4i2.5238
References
[1] S. Puspawati, Wagiman, M. Ainuri, D. A. Nugraha, and Haslianti, “The Production of Bioethanol Fermentation Substrate from Eucheuma cottonii Seaweed through Hydrolysis by Cellulose Enzyme,” Agric. Agric. Sci. Procedia, vol. 3, pp. 200–205, Jan. 2015.
[2] S. Sansuk, W. Tongphoothorn, A. Sirimungkala, and T. Somboon, “A simple, precise and cost-effective determination of ethanol content in gasohol through the ferroin-catalyzed Belousov-Zhabotinsky oscillating system,” Microchem. J., vol. 149, p. 104023, Sep. 2019.
[3] L. Vilela Steiner, D. Toledo Ramos, A. M. Rubini Liedke, M. P. Serbent, and H. X. Corseuil, “Ethanol content in different gasohol blend spills influences the decision-making on remediation technologies,” J. Environ. Manage., vol. 212, pp. 8–16, Sep. 2018.
[4] J. O. Virgínio e Silva, M. F. Almeida, M. da Conceição Alvim-Ferraz, and J. M. Dias, “Integrated production of biodiesel and bioethanol from sweet potato,” Renew. Energy, vol. 124, pp. 114–120, Aug. 2018.
[5] J. S. Tan, P. Phapugrangkul, C. K. Lee, Z. W. Lai, M. H. Abu Bakar, and P. Murugan, “Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae,” Biocatal. Agric. Biotechnol., vol. 21, p. 101293, Sep. 2019.
[6] H. Amrulloh, W. Simanjutak, R. T. M. Situmeang, S. L. Sagala, R. Bramawanto, and R. Nahrowi, “Effect of Dilution and Electrolysis Time on Recovery of Mg2+ As Mg(OH)2 from Bittern by Electrochemical Method,” J. Pure Appl. Chem. Res., vol. 8, no. 1, pp. 87–95, Apr. 2019.
[7] Ahmad Zarnuji, Hanif Amrulloh, and Isnaini Nur Azizah, “Utilization of Rice Husk Waste for Paper Raw Materials as An Arabic Calligraphy Media,” Engagem. J. Pengabdi. Kpd. Masy., vol. 3, no. 1, pp. 43–54, May 2019.
[8] Ershov, E. V. Grigoreva, I. F. Habibullin, V. E. Emelyanov, and D. M. Strekalina, “Prospects of bioethanol fuels E30 and E85 application in Russia and technical requirements for their quality,” Renew. Sustain. Energy Rev., vol. 66, pp. 228–232, Dec. 2016.
[9] D. Khatiwada and S. Silveira, “Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?,” Energy, vol. 119, pp. 351–361, Jan. 2017.
[10] H. Thatoi, P. K. Dash, S. Mohapatra, and M. R. Swain, “Bioethanol production from tuber crops using fermentation technology: a review,” Int. J. Sustain. Energy, vol. 35, no. 5, pp. 443–468, May 2016.
[11] W. H. Wu, W. C. Hung, K. Y. Lo, Y. H. Chen, H. P. Wan, and K. C. Cheng, “Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21,” Bioresour. Technol., vol. 201, pp. 27–32, Feb. 2016.
[12] N. H. W. Yuliarie Wulandari, “Characterization of Edible Film from Starch of Taro (Colocasia esculenta (L.) Schott) with Addition of Chitosan on Dodol Substituted Seaweed (Eucheuma cottonii L.),” Food Technol. Halal Sci. J., vol. 1, no. 1, pp. 22–32, Jan. 2019.
[13] M. Lovera, E. Pérez, and A. Laurentin, “Digestibility of starches isolated from stem and root tubers of arracacha, cassava, cush–cush yam, potato and taro,” Carbohydr. Polym., vol. 176, pp. 50–55, Nov. 2017.
[14] D. D. Indriatmoko, N. Suryani, D. P. Lestari, and T. Rudiana, “Effect of Beneng Taro Starch (Xanthosoma undipes K. Koch) Concentration as Disintegrant on Active Ingredient and Microbial Limit Test of Paracetamol 500 mg Tablets,” J. Kartika Kim., vol. 2, no. 2, pp. 92–99, Nov. 2019.
[15] A. Kumar, R. Deb, and J. Singh, “Bioethanol production from renewable biomass by yeast,” in Fungi and their Role in Sustainable Development: Current Perspective, Springer Singapore, 2018, pp. 427–448.
[16] W. Simanjuntak, H. Satria, and N. Utami, “Production of reducing sugar from cassava solid waste by simultaneous ultrasonication and acid hydrolysis,” Indones. J. Chem., vol. 14, no. 3, pp. 233–238, Oct. 2014.
[17] Y. Wang, H. Xiong, Z. Wang, Zia-ud-Din, and L. Chen, “Effects of different durations of acid hydrolysis on the properties of starch-based wood adhesive,” Int. J. Biol. Macromol., vol. 103, pp. 819–828, Oct. 2017.
[18] K. S. Muthuvelu, R. Rajarathinam, L. P. Kanagaraj, R. V. Ranganathan, K. Dhanasekaran, and N. K. Manickam, “Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment,” Waste Manag., vol. 87, pp. 368–374, Mar. 2019.
[19] M. A. L. Russo, R. Truss, and P. J. Halley, “The enzymatic hydrolysis of starch-based PVOH and polyol plasticised blends,” Carbohydr. Polym., vol. 77, no. 3, pp. 442–448, Jul. 2009.
[20] T. Kochanė et al., “Starch hydrolysis using maltogenase immobilized via different techniques,” Int. J. Biol. Macromol., vol. 144, pp. 544–552, Feb. 2020.
[21] L. Lin, L. Zhang, X. Cai, Q. Liu, C. Zhang, and C. Wei, “The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents,” Food Hydrocoll., vol. 84, pp. 406–413, Nov. 2018.
[22] H. I. Aljohar et al., “Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment,” Saudi Pharm. J., vol. 26, no. 7, pp. 932–942, Nov. 2018.
[23] P. A. B. Da Silva, G. C. S. De Souza, A. P. S. Paim, and A. F. Lavorante, “Spectrophotometric determination of reducing sugar in wines employing in-line dialysis and a multicommuted flow analysis approach,” J. Chil. Chem. Soc., vol. 63, no. 2, pp. 3994–4000, 2018.
[24] Y. Song, E. J. Cho, C. S. Park, C. H. Oh, B. J. Park, and H. J. Bae, “A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods,” Renew. Energy, vol. 139, pp. 1281–1289, Aug. 2019.
[25] T. Salim, L. Ratnawati, W. Agustina, and Sriharti, “Bioethanol Production from Glucose by Thermophilic Microbes from Ciater Hot Springs,” Procedia Chem., vol. 16, pp. 503–510, Jan. 2015.
[26] O. Rusin et al., “Macrocycle-derived functional xanthenes and progress towards concurrent detection of glucose and fructose,” J. Fluoresc., vol. 14, no. 5, pp. 611–615, Sep. 2004.
[27] A. J. Palacios-Fonseca et al., “Effect of the alkaline and acid treatments on the physicochemical properties of corn starch,” CYTA - J. Food, vol. 11, no. SUPPL.1, pp. 67–74, May 2013.
[2] S. Sansuk, W. Tongphoothorn, A. Sirimungkala, and T. Somboon, “A simple, precise and cost-effective determination of ethanol content in gasohol through the ferroin-catalyzed Belousov-Zhabotinsky oscillating system,” Microchem. J., vol. 149, p. 104023, Sep. 2019.
[3] L. Vilela Steiner, D. Toledo Ramos, A. M. Rubini Liedke, M. P. Serbent, and H. X. Corseuil, “Ethanol content in different gasohol blend spills influences the decision-making on remediation technologies,” J. Environ. Manage., vol. 212, pp. 8–16, Sep. 2018.
[4] J. O. Virgínio e Silva, M. F. Almeida, M. da Conceição Alvim-Ferraz, and J. M. Dias, “Integrated production of biodiesel and bioethanol from sweet potato,” Renew. Energy, vol. 124, pp. 114–120, Aug. 2018.
[5] J. S. Tan, P. Phapugrangkul, C. K. Lee, Z. W. Lai, M. H. Abu Bakar, and P. Murugan, “Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae,” Biocatal. Agric. Biotechnol., vol. 21, p. 101293, Sep. 2019.
[6] H. Amrulloh, W. Simanjutak, R. T. M. Situmeang, S. L. Sagala, R. Bramawanto, and R. Nahrowi, “Effect of Dilution and Electrolysis Time on Recovery of Mg2+ As Mg(OH)2 from Bittern by Electrochemical Method,” J. Pure Appl. Chem. Res., vol. 8, no. 1, pp. 87–95, Apr. 2019.
[7] Ahmad Zarnuji, Hanif Amrulloh, and Isnaini Nur Azizah, “Utilization of Rice Husk Waste for Paper Raw Materials as An Arabic Calligraphy Media,” Engagem. J. Pengabdi. Kpd. Masy., vol. 3, no. 1, pp. 43–54, May 2019.
[8] Ershov, E. V. Grigoreva, I. F. Habibullin, V. E. Emelyanov, and D. M. Strekalina, “Prospects of bioethanol fuels E30 and E85 application in Russia and technical requirements for their quality,” Renew. Sustain. Energy Rev., vol. 66, pp. 228–232, Dec. 2016.
[9] D. Khatiwada and S. Silveira, “Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?,” Energy, vol. 119, pp. 351–361, Jan. 2017.
[10] H. Thatoi, P. K. Dash, S. Mohapatra, and M. R. Swain, “Bioethanol production from tuber crops using fermentation technology: a review,” Int. J. Sustain. Energy, vol. 35, no. 5, pp. 443–468, May 2016.
[11] W. H. Wu, W. C. Hung, K. Y. Lo, Y. H. Chen, H. P. Wan, and K. C. Cheng, “Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21,” Bioresour. Technol., vol. 201, pp. 27–32, Feb. 2016.
[12] N. H. W. Yuliarie Wulandari, “Characterization of Edible Film from Starch of Taro (Colocasia esculenta (L.) Schott) with Addition of Chitosan on Dodol Substituted Seaweed (Eucheuma cottonii L.),” Food Technol. Halal Sci. J., vol. 1, no. 1, pp. 22–32, Jan. 2019.
[13] M. Lovera, E. Pérez, and A. Laurentin, “Digestibility of starches isolated from stem and root tubers of arracacha, cassava, cush–cush yam, potato and taro,” Carbohydr. Polym., vol. 176, pp. 50–55, Nov. 2017.
[14] D. D. Indriatmoko, N. Suryani, D. P. Lestari, and T. Rudiana, “Effect of Beneng Taro Starch (Xanthosoma undipes K. Koch) Concentration as Disintegrant on Active Ingredient and Microbial Limit Test of Paracetamol 500 mg Tablets,” J. Kartika Kim., vol. 2, no. 2, pp. 92–99, Nov. 2019.
[15] A. Kumar, R. Deb, and J. Singh, “Bioethanol production from renewable biomass by yeast,” in Fungi and their Role in Sustainable Development: Current Perspective, Springer Singapore, 2018, pp. 427–448.
[16] W. Simanjuntak, H. Satria, and N. Utami, “Production of reducing sugar from cassava solid waste by simultaneous ultrasonication and acid hydrolysis,” Indones. J. Chem., vol. 14, no. 3, pp. 233–238, Oct. 2014.
[17] Y. Wang, H. Xiong, Z. Wang, Zia-ud-Din, and L. Chen, “Effects of different durations of acid hydrolysis on the properties of starch-based wood adhesive,” Int. J. Biol. Macromol., vol. 103, pp. 819–828, Oct. 2017.
[18] K. S. Muthuvelu, R. Rajarathinam, L. P. Kanagaraj, R. V. Ranganathan, K. Dhanasekaran, and N. K. Manickam, “Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment,” Waste Manag., vol. 87, pp. 368–374, Mar. 2019.
[19] M. A. L. Russo, R. Truss, and P. J. Halley, “The enzymatic hydrolysis of starch-based PVOH and polyol plasticised blends,” Carbohydr. Polym., vol. 77, no. 3, pp. 442–448, Jul. 2009.
[20] T. Kochanė et al., “Starch hydrolysis using maltogenase immobilized via different techniques,” Int. J. Biol. Macromol., vol. 144, pp. 544–552, Feb. 2020.
[21] L. Lin, L. Zhang, X. Cai, Q. Liu, C. Zhang, and C. Wei, “The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents,” Food Hydrocoll., vol. 84, pp. 406–413, Nov. 2018.
[22] H. I. Aljohar et al., “Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment,” Saudi Pharm. J., vol. 26, no. 7, pp. 932–942, Nov. 2018.
[23] P. A. B. Da Silva, G. C. S. De Souza, A. P. S. Paim, and A. F. Lavorante, “Spectrophotometric determination of reducing sugar in wines employing in-line dialysis and a multicommuted flow analysis approach,” J. Chil. Chem. Soc., vol. 63, no. 2, pp. 3994–4000, 2018.
[24] Y. Song, E. J. Cho, C. S. Park, C. H. Oh, B. J. Park, and H. J. Bae, “A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods,” Renew. Energy, vol. 139, pp. 1281–1289, Aug. 2019.
[25] T. Salim, L. Ratnawati, W. Agustina, and Sriharti, “Bioethanol Production from Glucose by Thermophilic Microbes from Ciater Hot Springs,” Procedia Chem., vol. 16, pp. 503–510, Jan. 2015.
[26] O. Rusin et al., “Macrocycle-derived functional xanthenes and progress towards concurrent detection of glucose and fructose,” J. Fluoresc., vol. 14, no. 5, pp. 611–615, Sep. 2004.
[27] A. J. Palacios-Fonseca et al., “Effect of the alkaline and acid treatments on the physicochemical properties of corn starch,” CYTA - J. Food, vol. 11, no. SUPPL.1, pp. 67–74, May 2013.