Effect of catalysts on the conversion of polystyrene plastic waste into fuel with the Catalytic Cracking Method English
Main Article Content
Abstract
Polystyrene is useful product that widely used today. But when it becomes waste, Polystyrene can cause environmental problem such as air pollution, soil contamination, as well as economical resistence due to the increase of space and disposal costs. On the other hand Polystyrene can be converted into fuel. It is expected can be a solution of the problem. The aim of this research is to convert polystyrene plastic waste into useful fuel with catalytic cracking process. Zeolit and Al2O3 was used as catalyst in this research as musch as 8 % feed. Temperature set at 250 oC. At the optimum reaction condition (catalyst Al2O3 and the length of cracking time is 30 minutes) the liquid yield of catalytic cracking process was 29.40 %. Physical properties like density, spgr, oAPI gravity and calorific value of fuel samples is determined and compared to gasoline standard. The result showed that density, spgr, oAPI gravity and calorific value was close to the density, spgr, oAPI gravity and calorific value of gasoline standard.
Article Details
How to Cite
Effect of catalysts on the conversion of polystyrene plastic waste into fuel with the Catalytic Cracking Method: English. (2020). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 4(1), 24-29. https://doi.org/10.19109/alkimia.v4i1.5469
Section
Articles
- The author saves the copyright and gives the journal simultaneously with the license under Creative Commons Attribution License which permits other people to share the work by stating that it is firstly published in this journal.
- The author can post their work in an institutional repository or publish it in a book by by stating that it is firstly published in this journal.
- The author is allowed to post their work online (for instance, in an institutional repository or their own website) before and during the process of delivery. (see Open Access Effect).
How to Cite
Effect of catalysts on the conversion of polystyrene plastic waste into fuel with the Catalytic Cracking Method: English. (2020). ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 4(1), 24-29. https://doi.org/10.19109/alkimia.v4i1.5469
References
[1] Hidayat, Y. A., Kiranamahsa, S. & Zamal, M. A. A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy. 7. 350–370. (2019). DOI: 10.3934/energy.2019.3.350
[2] Singh, P. & Sharma, V. P. Integrated Plastic Waste Management: Environmental and Improved Health Approaches. Procedia Environ. Sci. 35. 692–700. (2016). DOI: 10.1016/j.proenv.2016.07.068
[3] Zarnuji, A., Amrulloh, H. & Azizah, I. N. Utilization of Rice Husk Waste for Paper Raw Materials as An Arabic Calligraphy Media. Engagem. J. Pengabdi. Kpd. Masy. 3. 43–54. 2019. DOI: 10.29062/engagement.v3i1.49
[4] Azimi Jibril, J. D., Bin Sipan, I., Sapri, M., Shika, S. A., Isa, M. & Abdullah, S. 3Rs Critical Success Factor in Solid Waste Management System for Higher Educational Institutions. Procedia - Soc. Behav. Sci. 65. 626–631. (2012). DOI: 10.1016/j.sbspro.2012.11.175
[5] Faraca, G. & Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 95. 388–398. (2019). DOI: 10.1016/j.wasman.2019.06.038
[6] Eriksen, M. K. & Astrup, T. F. Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system. Waste Manag. 87. 161–172. (2019). DOI: 10.1016/j.wasman.2019.02.006
[7] Tang, Y. T., Ma, X. Q., Lai, Z. Y. & Fan, Y. Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres. Energy. 90. 1066–1074. (2015). DOI: 10.1016/j.energy.2015.08.015
[8] Ma, J., Wang, J., Tian, X. & Zhao, H. In-situ gasification chemical looping combustion of plastic waste in a semi-continuously operated fluidized bed reactor. Proc. Combust. Inst. 37. 4389–4397. (2019). DOI: 10.1016/j.proci.2018.07.032
[9] Jeevahan, J., Anderson, A., Sriram, V. Durairaj, R. B., Joseph, G. B. & Mageshwaran, G. Waste into energy conversion technologies and conversion of food wastes into the potential products: A review. Int. J. Ambient Energy. (2019). DOI: 10.1080/01430750.2018.1537939
[10] Zhang, L. & Xu, Z. C, H, Cl, and in Element Cycle in Wastes: Vacuum Pyrolysis of PVC Plastic to Recover Indium in LCD Panels and Prepare Carbon Coating. ACS Sustain. Chem. Eng. 5. 8918–8929. (2017). DOI: 10.1021/acssuschemeng.7b01737
[11] Schweighuber, A., Himmelsbach, M. Buchberger, W. & Klampfl, C. W. Analysis of polycyclic aromatic hydrocarbons migrating from polystyrene/divinylbenzene-based food contact materials. Monatshefte fur Chemie. 150. 901–906. (2019). DOI: 10.1007/s00706-019-2377-1
[12] Tong, X. C. Electronic Packaging Materials and Their Functions in Thermal Managements, in Advanced Materials for Thermal Management of Electronic Packaging. Springer. (2011). 131–167. DOI: 10.1007/978-1-4419-7759-5_3
[13] Neppalli, R., Causin, V., Benetti, E. M., Ray, S.S., Esposito, A., Wanjale, S., Birajdar, M., Saiter, J. M. & Marigo, A. Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): Structure, morphology and properties. Eur. Polym. J. 50. 78–86. (2014). DOI: 10.1016/j.eurpolymj.2013.11.002
[14] Hamidova, J. S., Abdullayeva, L. A., Isakov, E. U. & Hasanov, V. S. Polystyrene-based viscosity additives. Russ. J. Appl. Chem. 88. 1816–1819. (2015). DOI: 10.1134/S10704272150110129
[15] Kar Mei, S. N., Kang, Y. L., Rosdi, A. N., Pichiah, S. & Ibrahim, S. Synthesis and characterization of proton exchange membrane employing waste polystyrene as precursor. Nat. Resour. Eng. 1. 35–42. (2016). DOI: 10.1080/23802693.2016.1242226
[16] Li, D., Park, E. J., Zhu, W., Shi, Q., Zhou, Y., Tian, H., Lin, Y., Serov, A., Zulevi, B., Baca, E. D., Fujimoto, C., Chung, H. T. & Kim, Y. S. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy. 1–8. (2020). DOI: 10.1038/s41560-020-0577-x
[17] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 102. 822–838. (2016). DOI: 10.1016/j.psep.2016.06.022
[18] Adnan, A., Shah, J. & Jan, M. R. Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. J. Taiwan Inst. Chem. Eng. 45. 2494–2500. (2014). DOI: 10.1016/j.jtice.2014.05.011
[19] Oh, D., Lee, H. W., Kim, Y. M. & Park, Y. K. Catalytic pyrolysis of polystyrene and polyethylene terephthalate over Al-MSU-F. Energy Procedia. 144. 111–117. (2018). DOI: 10.1016/j.egypro.2018.06.015
[20] Maryudi, M., Salamah, S. & Aktawan, A. Product distribution of pyrolysis of polystyrene foam waste using catalyst of natural zeolite and nickel/silica. in IOP Conference Series: Earth and Environmental Science. 175. 120-122. (2018). DOI: 10.1088/1755-1315/175/1/012012
[21] Imani Moqadam, S., Mirdrikvand, M., Roozbehani, B., Kharaghani, A. & Shishehsaz, M. R. Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor. Clean Technol. Environ. Policy. 17. 1847–1860. (2015). DOI: 10.1007/s10098-015-0899-8
[22] Thahir, R., Altway, A., Juliastuti, S. R. & Susianto, S. Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports. 5. 70–77. (2019). DOI: 10.1016/j.egyr.2018.11.004
[23] Pattiya, A. Catalytic pyrolysis in Direct Thermochemical Liquefaction for Energy Applications. Elsevier. (2018). 29–64. DOI: 10.1016/B978-0-08-101029-7.00002-3
[24] Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Gardy, J. & Nizami, A. S. Effect of advanced catalysts on tire waste pyrolysis oil. Process Saf. Environ. Prot. 116. 542–552. (2018). DOI: 10.1016/j.psep.2018.03.024
[25] Thongchai, S. & Lim, O. Influence of Biodiesel Blended in Gasoline-Based Fuels on Macroscopic Spray Structure from a Diesel Injector. Int. J. Automot. Technol. 20. 701–711. (2019). DOI: 10.1007/s12239-019-0066-z
[26] Trueba, M. & Trasatti, S. P. γ-alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005. 3393–3403. (2005). DOI: 10.1002/ejic.200500348
[2] Singh, P. & Sharma, V. P. Integrated Plastic Waste Management: Environmental and Improved Health Approaches. Procedia Environ. Sci. 35. 692–700. (2016). DOI: 10.1016/j.proenv.2016.07.068
[3] Zarnuji, A., Amrulloh, H. & Azizah, I. N. Utilization of Rice Husk Waste for Paper Raw Materials as An Arabic Calligraphy Media. Engagem. J. Pengabdi. Kpd. Masy. 3. 43–54. 2019. DOI: 10.29062/engagement.v3i1.49
[4] Azimi Jibril, J. D., Bin Sipan, I., Sapri, M., Shika, S. A., Isa, M. & Abdullah, S. 3Rs Critical Success Factor in Solid Waste Management System for Higher Educational Institutions. Procedia - Soc. Behav. Sci. 65. 626–631. (2012). DOI: 10.1016/j.sbspro.2012.11.175
[5] Faraca, G. & Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 95. 388–398. (2019). DOI: 10.1016/j.wasman.2019.06.038
[6] Eriksen, M. K. & Astrup, T. F. Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system. Waste Manag. 87. 161–172. (2019). DOI: 10.1016/j.wasman.2019.02.006
[7] Tang, Y. T., Ma, X. Q., Lai, Z. Y. & Fan, Y. Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres. Energy. 90. 1066–1074. (2015). DOI: 10.1016/j.energy.2015.08.015
[8] Ma, J., Wang, J., Tian, X. & Zhao, H. In-situ gasification chemical looping combustion of plastic waste in a semi-continuously operated fluidized bed reactor. Proc. Combust. Inst. 37. 4389–4397. (2019). DOI: 10.1016/j.proci.2018.07.032
[9] Jeevahan, J., Anderson, A., Sriram, V. Durairaj, R. B., Joseph, G. B. & Mageshwaran, G. Waste into energy conversion technologies and conversion of food wastes into the potential products: A review. Int. J. Ambient Energy. (2019). DOI: 10.1080/01430750.2018.1537939
[10] Zhang, L. & Xu, Z. C, H, Cl, and in Element Cycle in Wastes: Vacuum Pyrolysis of PVC Plastic to Recover Indium in LCD Panels and Prepare Carbon Coating. ACS Sustain. Chem. Eng. 5. 8918–8929. (2017). DOI: 10.1021/acssuschemeng.7b01737
[11] Schweighuber, A., Himmelsbach, M. Buchberger, W. & Klampfl, C. W. Analysis of polycyclic aromatic hydrocarbons migrating from polystyrene/divinylbenzene-based food contact materials. Monatshefte fur Chemie. 150. 901–906. (2019). DOI: 10.1007/s00706-019-2377-1
[12] Tong, X. C. Electronic Packaging Materials and Their Functions in Thermal Managements, in Advanced Materials for Thermal Management of Electronic Packaging. Springer. (2011). 131–167. DOI: 10.1007/978-1-4419-7759-5_3
[13] Neppalli, R., Causin, V., Benetti, E. M., Ray, S.S., Esposito, A., Wanjale, S., Birajdar, M., Saiter, J. M. & Marigo, A. Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): Structure, morphology and properties. Eur. Polym. J. 50. 78–86. (2014). DOI: 10.1016/j.eurpolymj.2013.11.002
[14] Hamidova, J. S., Abdullayeva, L. A., Isakov, E. U. & Hasanov, V. S. Polystyrene-based viscosity additives. Russ. J. Appl. Chem. 88. 1816–1819. (2015). DOI: 10.1134/S10704272150110129
[15] Kar Mei, S. N., Kang, Y. L., Rosdi, A. N., Pichiah, S. & Ibrahim, S. Synthesis and characterization of proton exchange membrane employing waste polystyrene as precursor. Nat. Resour. Eng. 1. 35–42. (2016). DOI: 10.1080/23802693.2016.1242226
[16] Li, D., Park, E. J., Zhu, W., Shi, Q., Zhou, Y., Tian, H., Lin, Y., Serov, A., Zulevi, B., Baca, E. D., Fujimoto, C., Chung, H. T. & Kim, Y. S. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy. 1–8. (2020). DOI: 10.1038/s41560-020-0577-x
[17] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 102. 822–838. (2016). DOI: 10.1016/j.psep.2016.06.022
[18] Adnan, A., Shah, J. & Jan, M. R. Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. J. Taiwan Inst. Chem. Eng. 45. 2494–2500. (2014). DOI: 10.1016/j.jtice.2014.05.011
[19] Oh, D., Lee, H. W., Kim, Y. M. & Park, Y. K. Catalytic pyrolysis of polystyrene and polyethylene terephthalate over Al-MSU-F. Energy Procedia. 144. 111–117. (2018). DOI: 10.1016/j.egypro.2018.06.015
[20] Maryudi, M., Salamah, S. & Aktawan, A. Product distribution of pyrolysis of polystyrene foam waste using catalyst of natural zeolite and nickel/silica. in IOP Conference Series: Earth and Environmental Science. 175. 120-122. (2018). DOI: 10.1088/1755-1315/175/1/012012
[21] Imani Moqadam, S., Mirdrikvand, M., Roozbehani, B., Kharaghani, A. & Shishehsaz, M. R. Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor. Clean Technol. Environ. Policy. 17. 1847–1860. (2015). DOI: 10.1007/s10098-015-0899-8
[22] Thahir, R., Altway, A., Juliastuti, S. R. & Susianto, S. Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports. 5. 70–77. (2019). DOI: 10.1016/j.egyr.2018.11.004
[23] Pattiya, A. Catalytic pyrolysis in Direct Thermochemical Liquefaction for Energy Applications. Elsevier. (2018). 29–64. DOI: 10.1016/B978-0-08-101029-7.00002-3
[24] Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Gardy, J. & Nizami, A. S. Effect of advanced catalysts on tire waste pyrolysis oil. Process Saf. Environ. Prot. 116. 542–552. (2018). DOI: 10.1016/j.psep.2018.03.024
[25] Thongchai, S. & Lim, O. Influence of Biodiesel Blended in Gasoline-Based Fuels on Macroscopic Spray Structure from a Diesel Injector. Int. J. Automot. Technol. 20. 701–711. (2019). DOI: 10.1007/s12239-019-0066-z
[26] Trueba, M. & Trasatti, S. P. γ-alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005. 3393–3403. (2005). DOI: 10.1002/ejic.200500348