Eco-friendly Removal of Methylene Blue Using Alginate-Activated Natural Clay Composite
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- The author saves the copyright and gives the journal simultaneously with the license under Creative Commons Attribution License which permits other people to share the work by stating that it is firstly published in this journal.
- The author can post their work in an institutional repository or publish it in a book by by stating that it is firstly published in this journal.
- The author is allowed to post their work online (for instance, in an institutional repository or their own website) before and during the process of delivery. (see Open Access Effect).
How to Cite
References
B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation, vol. 3, no. 2, pp. 275–290, Jul. 2019, doi: 10.1016/j.biori.2019.09.001.
S. Khan and A. Malik, “Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye,” Environmental Science and Pollution Research, vol. 25, no. 5, pp. 4446–4458, Feb. 2018, doi: 10.1007/s11356-017-0783-7.
R. Kishor et al., “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety,” J Environ Chem Eng, vol. 9, no. 2, Apr. 2021, doi: 10.1016/j.jece.2020.105012.
B. Jagruti, “Evaluation of azo dye toxicity using some haematogical and histopathological alterations in fis Catla catla,” International Journal of Biological, Food, Veterinary and Agricultural Engineering, vol. 9, no. 5, 2015.
T. Ito, Y. Adachi, Y. Yamanashi, and Y. Shimada, “Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes,” Water Res, vol. 100, pp. 458–465, 2016, doi: 10.1016/j.watres.2016.05.050.
P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola, “Methylene blue dye: Toxicity and potential elimination technology from wastewater,” Results in Engineering, vol. 16, Dec. 2022, doi: 10.1016/j.rineng.2022.100678.
A. M. McDonnell, I. Rybak, M. Wadleigh, and D. C. Fisher, “Suspected serotonin syndrome in a patient being treated with methylene blue for ifosfamide encephalopathy,” Journal of Oncology Pharmacy Practice, vol. 18, no. 4, pp. 436–439, Dec. 2012, doi: 10.1177/1078155211433231.
Y. R. Sheynkin, C. Starr, P. S. Li, and M. Goldstein, “Effect of methylene blue, indigo carmine, and renografin on human sperm motility,” Urology, vol. 53, pp. 214–217, 1999, doi: https://doi.org/10.1016/S0090-4295(98)00414-2.
M. M. Hassan and C. M. Carr, “A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.chemosphere.2018.06.043.
E. Altıntıg, H. Altundag, M. Tuzen, and A. Sarı, “Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent,” Chemical Engineering Research and Design, vol. 122, pp. 151–163, 2017, doi: 10.1016/j.cherd.2017.03.035.
P. K. Jaseela, J. Garvasis, and A. Joseph, “Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2) – poly vinyl alcohol (PVA) nanocomposite,” J Mol Liq, vol. 286, 2019, doi: 10.1016/j.molliq.2019.110908.
X. Wan, Z. Rong, K. Zhu, and Y. Wu, “Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye,” Int J Biol Macromol, vol. 222, pp. 725–735, 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.09.213.
S. M. Doke and G. D. Yadav, “Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent,” Chemosphere, vol. 117, no. 1, pp. 760–765, 2014, doi: 10.1016/j.chemosphere.2014.10.029.
E. Oyarce, B. Butter, P. Santander, and J. Sánchez, “Polyelectrolytes applied to remove methylene blue and methyl orange dyes from water via polymer-enhanced ultrafiltration,” J Environ Chem Eng, vol. 9, no. 6, Dec. 2021, doi: 10.1016/j.jece.2021.106297.
S. Parakala, S. Moulik, and S. Sridhar, “Effective separation of methylene blue dye from aqueous solutions by integration of micellar enhanced ultrafiltration with vacuum membrane distillation,” Chemical Engineering Journal, vol. 375, Nov. 2019, doi: 10.1016/j.cej.2019.122015.
R. Kishor et al., “Efficient degradation and detoxification of methylene blue dye by a newly isolated ligninolytic enzyme producing bacterium Bacillus albus MW407057,” Colloids Surf B Biointerfaces, vol. 206, Oct. 2021, doi: 10.1016/j.colsurfb.2021.111947.
A. Samide, B. Tutunaru, C. Tigae, R. Efrem, A. Moanţă, and M. Drăgoi, “Removal of methylene blue and methyl blue from wastewater by electrochemical degradation,” Environment Protection Engineering, vol. 40, no. 4, Mar. 2020, doi: 10.37190/epe140408.
A. S. Van Der Maas, N. J. R. Da Silva, A. S. V. Da Costa, A. R. Barros, and C. A. Bomfeti, “The degradation of methylene blue dye by the strain of Pleurotus sp. with potential application in bioremediation precesses,” Revista Ambiente Agua, vol. 13, pp. 1–10, 2018, doi: 10.4136/1980-993X.
S. Ihaddaden, D. Aberkane, A. Boukerroui, and D. Robert, “Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica),” Journal of Water Process Engineering, vol. 49, p. 102952, 2022, doi: https://doi.org/10.1016/j.jwpe.2022.102952.
N. Jorge, A. R. Teixeira, L. Marchão, P. B. Tavares, M. S. Lucas, and J. A. Peres, “Removal of methylene blue from aqueous solution by application of plant-based coagulants,” Engineering Proceedings, vol. 19, no. 1, 2022, doi: 10.3390/ECP2022-12659.
M. Alizadeh, E. Ghahramani, M. Zarrrabi, and S. Hashemi, “Efficient de-colorization of methylene blue by electro-coagulation method: comparison of iron and aluminum electrode,” Iran. J. Chem. Chem. Eng. Alizadeh M. et al, vol. 34, no. 1, 2015, doi: https://doi.org/10.30492/ijcce.2015.12679.
M. A. E. Wafi, M. A. Ahmed, H. S. Abdel-Samad, and H. A. A. Medien, “Exceptional removal of methylene blue and p-aminophenol dye over novel TiO2/RGO nanocomposites by tandem adsorption-photocatalytic processes,” Mater Sci Energy Technol, vol. 5, pp. 217–231, Jan. 2022, doi: 10.1016/j.mset.2022.02.003.
O. A. Yildirim and E. Pehlivan, “Removal of methylene blue using a novel generation photocatalyst based on nano-SnO2/wild plumb kernel shell biochar composite,” J Dispers Sci Technol, vol. 44, no. 14, pp. 2748–2759, 2023, doi: 10.1080/01932691.2022.2144878.
J. Ramírez-Aparicio, J. E. Samaniego-Benítez, M. A. Murillo-Tovar, J. L. Benítez-Benítez, E. Muñoz-Sandoval, and M. L. García-Betancourt, “Removal and surface photocatalytic degradation of methylene blue on carbon nanostructures,” Diam Relat Mater, vol. 119, p. 108544, 2021, doi: https://doi.org/10.1016/j.diamond.2021.108544.
G. Mckay, J. F. Porter, and G. R. Prasad, “The removal of dye colours from aqyeous solutions by adsorption on low-cost materials,” Water Air Soil Pollut, vol. 114, pp. 423–438, 1999.
S. Wang, J. Dou, T. Zhang, S. Li, and X. Chen, “Selective Adsorption of Methyl Orange and Methylene Blue by Porous Carbon Material Prepared From Potassium Citrate,” ACS Omega, vol. 8, no. 38, pp. 35024–35033, Sep. 2023, doi: 10.1021/acsomega.3c04124.
G. Mosoarca, C. Vancea, S. Popa, M. Gheju, and S. Boran, “Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method,” Sci Rep, vol. 10, 2020, doi: 10.1038/s41598-020-74819-x.
C. P. Sagita, L. Nulandaya, and Y. S. Kurniawan, “Efficient and low-cost removal of methylene blue using activated natural kaolinite material,” Journal of Multidisciplinary Applied Natural Science, vol. 1, no. 2, pp. 69–77, Jul. 2021, doi: 10.47352/jmans.v1i2.80.
P. Sharma, H. Laddha, M. Agarwal, and R. Gupta, “Selective and effective adsorption of malachite green and methylene blue on a non-toxic, biodegradable, and reusable fenugreek galactomannan gum coupled MnO2 mesoporous hydrogel,” Microporous and Mesoporous Materials, vol. 338, p. 111982, 2022, doi: https://doi.org/10.1016/j.micromeso.2022.111982.
S. Barakan and V. Aghazadeh, “The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review,” Jan. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s11356-020-10985-9.
S. Vahidhabanu, D. Karuppasamy, A. I. Adeogun, and B. R. Babu, “Impregnation of zinc oxide modified clay over alginate beads: A novel material for the effective removal of congo red from wastewater,” RSC Adv, vol. 7, no. 10, pp. 5669–5678, 2017, doi: 10.1039/c6ra26273b.
N. Yang et al., “The fabrication of calcium alginate beads as a green sorbent for selective recovery of Cu(II) from metal mixtures,” Crystals (Basel), vol. 9, no. 5, May 2019, doi: 10.3390/cryst9050255.
R. da Silva Fernandes, M. R. de Moura, G. M. Glenn, and F. A. Aouada, “Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads,” J Mol Liq, vol. 265, pp. 327–336, Sep. 2018, doi: 10.1016/j.molliq.2018.06.005.
H. Han, M. K. Rafiq, T. Zhou, R. Xu, O. Mašek, and X. Li, “A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants,” J Hazard Mater, vol. 369, pp. 780–796, May 2019, doi: 10.1016/j.jhazmat.2019.02.003.
I. T. K. Ge, M. W. Nugraha, N. Ahmad Kamal, and N. S. Sambudi, “Composite of kaolin/sodium alginate (SA) beads for methylene blue adsorption,” ASEAN Journal of Chemical Engineering, vol. 19, no. 2, pp. 100–109, 2019, doi: 10.22146/ajche.51457.
A. A. Elzatahry, E. A. Soliman, M. S. M. Eldin, and M. E. Youssef, “Experimental and simulation study on removal of methylene blue dye by alginate micro-beads,” Journal of American Science, vol. 6, no. 10, pp. 845–851, 2010, [Online]. Available: https://www.researchgate.net/publication/259891705
X. Gao, C. Guo, J. Hao, Z. Zhao, H. Long, and M. Li, “Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives,” Int J Biol Macromol, vol. 164, pp. 4423–4434, 2020, doi: 10.1016/j.ijbiomac.2020.09.046.
S. Asadi, S. Eris, and S. Azizian, “Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions,” ACS Omega, vol. 3, no. 11, pp. 15140–15148, Nov. 2018, doi: 10.1021/acsomega.8b02498.
I. M. Sadiana, A. H. Fatah, and K. Karelius, “Sintesis Komposit Lempung Alam Magnetit sebagai Adsorben…. ( I Made Sadiana, dkk,” Sains dan Terapan Kimia, vol. 11, pp. 90–102, 2017, doi: http://dx.doi.org/10.20527/jstk.v11i2.4042.
M. M. Kolo, M. S. Batu, and M. M. Taus, “Karakterisasi Mineral Lempung Desa Maurisu Utara, Kabupaten Timor Tengah Utara Teraktivasi KOH sebagai Bahan Baku Adsorben,” Jurnal Cystal: PUblikasi Penelitian Kimia dan Terapannya, vol. 5, no. 1, pp. 14–21, 2023.
K. Karelius, “Extraction and characterization natural clay of central kalimantan as one of alternatives additives of geopolimer concrete,” Jurnal Pendidikan Teknologi dan Kejuruan BALANGA, vol. 5, pp. 1–10, 2017.
J. Wimpenny, “Clay minerals,” in Encyclopedia of Earth Sciences Series, Springer Science and Business Media B.V., 2016, pp. 1–11. doi: 10.1007/978-3-319-39193-9_51-1.
B. Patarachao et al., “XRD analysis of illite-smectite interstratification in clays from oil sands ores,” Advances in X-Ray Analysis, no. 62, pp. 22–31, 2019, [Online]. Available: www.dxcicdd.com
G. O. Phillips and P. A. Williams, Handbook of Hydrocolloids. in Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2009. [Online]. Available: https://books.google.co.id/books?id=3k-kAgAAQBAJ
K. I. Draget, O. SmidsrØd, and G. Skjåk-Brñk, “Polysaccharides and polyamides in the food industry : properties, production, and patents,” A. Steinbüchel and S. K. Rhee, Eds., Weinhem: Wiley-VCH, 2005, ch. Alginates from Algae.
H. Grasdalen, B. Larsen, and O. Smidsrqd, “13C-N.M.R. Studies of monomeric composition and sequence in alginate,” Carbohydr Res, vol. 89, pp. 179–191, 1981, doi: https://doi.org/10.1016/S0008-6215(00)85243-X.
F. A. Johnson, D. Q. M. Craig, and A. D. Mercer, “Characterization of the block structure and molecular weight of sodium alginates,” Journal of Pharmacy and Pharmacology, vol. 49, no. 7, pp. 639–643, 1997, doi: 10.1111/j.2042-7158.1997.tb06085.x.
M. D. Torres, S. Kraan, and H. Dominguez, Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications, 1st ed. Elsevier, 2020. doi: 10.1016/C2018-0-01462-0.
D. J. McHugh, Production and utilization of products from commercial seaweeds, 1st ed. Food and Agriculture Organization of the United Nations, 1987.
N. A. Ibrahim, A. A. Nada, and B. M. Eid, “Polysaccharide-Based Polymer Gels and Their Potential Applications,” 2018, ch. 4, pp. 97–126. doi: 10.1007/978-981-10-6083-0_4.
E. D. T. Atkins, I. A. Nieduszynski, W. Mackie, K. D. Parker, and E. E. Smolko, “Structural Components of Alginic Acid. I. The Crystalline Structure of Poly-p-D-Mannuronic Acid. Results of X-Ray Diffraction and Polarized Infrared Studies,” Biopolymers, vol. 12, pp. 1865–1878, 1973.
H. Huang, I. U. Grün, M. Ellersieck, and A. D. Clarke, “Measurement of total sodium alginate in restructured fish products using Fourier Transform Infrared Spectroscopy,” EC Nutr, vol. 11, pp. 33–45, 2017.
D. Leal, B. Matsuhiro, M. Rossi, and F. Caruso, “FT-IR Spectra of Alginic Acid Block Fractions in Three Species of Brown Seaweeds,” Carbohydr Res, vol. 343, no. 2, pp. 308–316, Feb. 2008, doi: 10.1016/j.carres.2007.10.016.
M. Z. I. Mollah, M. R. I. Faruque, D. A. Bradley, M. U. Khandaker, and S. Al Assaf, “FTIR and Rheology Study of Alginate Samples: Effect of Radiation,” Radiation Physics and Chemistry, vol. 202, Jan. 2023, doi: 10.1016/j.radphyschem.2022.110500.
G. Jozanikohan and M. N. Abarghooei, “The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir,” J Pet Explor Prod Technol, vol. 12, no. 8, pp. 2093–2106, Aug. 2022, doi: 10.1007/s13202-021-01449-y.
M. Pineau et al., “Estimating kaolinite crystallinity using near-infrared spectroscopy,” in 51st Lunar and Planetary Science Conference, 2020. [Online]. Available: https://www.researchgate.net/publication/339712567
J. Ojima, “Determining of crystalline silica in respirable dust samples by Infrared Spectrophotometry in the presence of interferences,” J Occup Health, vol. 45, no. 2, pp. 94–103, Mar. 2003, doi: 10.1539/joh.45.94.
G. A. P. K. Wardhani, N. Nurlela, and M. Azizah, “Silica content and structure from corncob ash with various acid treatment (HCl, HBr, and citric acid),” Molekul, vol. 12, no. 2, pp. 174–181, Nov. 2017, doi: 10.20884/1.jm.2017.12.2.382.
E. Eren, B. Afsin, and Y. Onal, “Removal of lead ions by acid activated and manganese oxide-coated bentonite,” J Hazard Mater, vol. 161, no. 2–3, pp. 677–685, Jan. 2009, doi: 10.1016/j.jhazmat.2008.04.020.
N. J. Saikia et al., “Characterization, beneficiation and utilization of a kaolinite clay from Assam, India,” Appl Clay Sci, vol. 24, no. 1–2, pp. 93–103, 2003, doi: 10.1016/S0169-1317(03)00151-0.
A. Zyoud et al., “Photocatalytic degradation of aqueous methylene blue using ca-alginate supported ZnO nanoparticles: point of zero charge role in adsorption and photodegradation,” Environmental Science and Pollution Research, vol. 30, no. 26, pp. 68435–68449, Jun. 2023, doi: 10.1007/s11356-023-27318-1.
S. A. Hussain, D. Sahinde, and G. Ozbayoglu, “Zeta Potential Measurements on Three Clays from Turkey and effects of clays on coal flotation,” J Colloid Interface Sci, vol. 184, pp. 535–541, 1996, doi: https://doi.org/10.1006/jcis.1996.0649.
M. Kosmulski, “pH-dependent surface charging and points of zero charge. III. Update,” J Colloid Interface Sci, vol. 298, no. 2, pp. 730–741, Jun. 2006, doi: 10.1016/j.jcis.2006.01.003.
J. J. Salazar-Rabago, R. Leyva-Ramos, J. Rivera-Utrilla, R. Ocampo-Perez, and F. J. Cerino-Cordova, “Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions,” Sustainable Environment Research, vol. 27, no. 1, pp. 32–40, Jan. 2017, doi: 10.1016/j.serj.2016.11.009.
Ü. Geçgel, G. Özcan, and G. Ç. Gürpnar, “Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum),” J Chem, 2013, doi: 10.1155/2013/614083.