2D Modelling and Inversion ff Magnetic Field Anomaly Base On Simple Prism

Main Article Content

Yulia Ayu Setyawati
Supriyadi Supriyadi
Nurul Priyantari

Abstract

The magnetic method use to determine the subsurface structure based on variations in the magnetic field on the earth's surface. interpretation of subsurface structures based on magnetic data includes parameters of depth, size, and magnetic susceptibility that can be obtained through modelling. The modelling carried out in this study includes forward modelling and inversion modelling for various parameters and also inversion modeling on WDMAM magnetic data in the Ijen area. Forward modelling results show that the value of the total magnetic field will be increase if the depth distance of the source of the anomaly is smaller, the susceptibility is greater, and the size of the anomalous object is getting bigger. Meanwhile, the results of the inversion modeling of synthetic data show a fairly good match between the subsurface structure and the initial synthetic model. The results of inversion modeling on WDMAM data in the Ijen area with coordinate boundaries 8˚30'- 8˚39' S and 113˚30' - 114˚30' E show the subsurface structure in the form of prism blocks with susceptibility dominated by mimeral magnetite, ilmenite , and pyrotite rocks at varying depths.

Downloads

Download data is not yet available.

Article Details

How to Cite
“2D Modelling and Inversion Ff Magnetic Field Anomaly Base On Simple Prism”. Jurnal Ilmu Fisika dan Pembelajarannya (JIFP) 5, no. 2 (December 24, 2021): 15–24. Accessed April 3, 2025. https://jurnal.radenfatah.ac.id/index.php/jifp/article/view/9428.
Section
Artikel

How to Cite

“2D Modelling and Inversion Ff Magnetic Field Anomaly Base On Simple Prism”. Jurnal Ilmu Fisika dan Pembelajarannya (JIFP) 5, no. 2 (December 24, 2021): 15–24. Accessed April 3, 2025. https://jurnal.radenfatah.ac.id/index.php/jifp/article/view/9428.

References

Arman, Y., Antonius & J. Sampurno. (2016). Pemodelan Anomali Magnetik Berbetuk Prisma Menggunakan Algoritma Genetika. Prisma Fisika. IV(02), 50 – 55.
Grandis, H. (2009). Pengantar Pemodelan Inversi Geofisika. Bandung : Himpunan Ahli Geofisika Indonesia.
Hinze, W.J., R.R. B. von Frese., & A.H Saad. (2013). Gravity And Magnetic Exploration : Principles, Practices, and Applications. New York : Cambridge University Press.
Jeshvaghani, M.S & M. DariJani . (2014). Two-Dimensional Geomagnetic Forward Modeling Using Adaptive Finite Element Method and Investigation of The Topographic Effect. Journal of Applied Geophysics, 105, 169-179.
Jia, Z.S.L, S. Cheng, X. Zhao, & G. Zhang, (2020). Modeling of Complex Geological Body and Computation of Geomagnetic Anomaly, Mathematical Problems in Engineering, 2020.
Kravchinsky, V. A., Hnatyshin, D., Lysak, B., & Alemie, W. 2019. Computation of Magnetic Anomalies Caused by Two‐Dimensional Structures of Arbitrary Shape: Derivation and Matlab implementation. Geophysical Research Letters, 46, 7346-7351.
Last, B.J & Kubik,K., (1983). Compact Gravity Inversion. Geophysics 48, 713–721
Menke, W. (1984). Geophysical data analysis : Discrete inverse theory. Academic Press.
Nugroho, I., M.T. Akbar, L.F. Erwin, F.T. Ismunanto, J.H. Almuhdar, & R.O. Riandikha. (2018). Forward modeling metode magnetik. Jakarta : Universitas Pertamina.
Said, U., M. Heriyanto dan W. Srigutomo. (2016). Perbandingan Inversi Least-Square dengan Levenberg-Marquardt pada Metode Geomagnet untuk Model Crustal Block. Bandung : ITB.
Stocco, S., A. Godio & L. Sambuelli. (2009). Modeling and compact inversion of magnetic data : A Matlab code. Computers and Geosciences. 35(10):2111–2118.
Talwani, M. (1965). Computation with The Help of a Digital Computer of Magnetic Anomalies Caused by Bodies of Arbitrary Shape. Geophysics, 30(5), 797-817.
Telford, M.W., Geldart L.P., Sheriff R.E., & Keys D.A. 1990. Applied Geophysics Second Edition. USA : Cambridge University Press.