Metode geometris cina kuno dalam desain pembelajaran pythagoras berbasis pemecahan masalah sejarah matematika pada jiuzhang suanshu
Main Article Content
Abstract
Studi ini mengkaji bagaimana Sejarah teorema Pythagoras, khususnya dari Cina kuno, dapat berfungsi sebagai sumber inspirasi untuk desain instruksional. Berdasarkan contoh sejarah dan pemecahan masalah dari sejarah matematika di Jiuzhang Shuanshu, dikembangkan serangkaian tugas instruksional untuk siswa sekolah menengah kelas tujuh dan bagaimana perannya dalam meningkatkan pengetahuan siswa tentang teorema Pythagoras. Dalam artikel ini dibahas preliminary investigations and teaching experiments dari tiga fase utama penelitian design-based research. Konsep dasar dari desain yang dikembangkan adalah untuk memperkenalkan manipulasi geometris historis dan memecahkan masalah segitiga siku-siku menurut metode geometris Liu Hui (abad ke-3 M). Tujuan pengajaran manipulasi geometris adalah untuk menggabungkan penalaran aljabar simbolis siswa dengan pemahaman visual mereka tentang Teorema Pythagoras. Dalam penelitian ini, kami membandingkan Hypothetical Learning Trajectory (HLT) dengan Actual Learning Trajectory (ALT) untuk mengetahui bagaimana peranan desain yang dikembangkan. Temuan penelitian ini menunjukkan bahwa masalah berbasis sejarah sebagai konteks dalam desain pembelajaran yang dikembangkan memberikan kesempatan kepada siswa untuk mempelajari teorema Pythagoras secara bermakna.
Article Details
How to Cite
Fachrudin, A. D., Juniati, D., & Khabibah, S. (2023). Metode geometris cina kuno dalam desain pembelajaran pythagoras berbasis pemecahan masalah sejarah matematika pada jiuzhang suanshu. Jurnal Pendidikan Matematika RAFA, 9(2), 123-136. https://doi.org/10.19109/jpmrafa.v9i2.15081
Section
Artikel
The requirements that must be met by the author are as follows:
- The author saves the copyright and gives the journal simultaneously with the license under Creative Commons Attribution License which permits other people to share the work by stating that it is firstly published in this journal.
- The author can post their work in an institutional repository or publish it in a book by by stating that it is firstly published in this journal.
- The author is allowed to post their work online (for instance, in an institutional repository or their own website) before and during the process of delivery. (see Open Access Effect).
How to Cite
Fachrudin, A. D., Juniati, D., & Khabibah, S. (2023). Metode geometris cina kuno dalam desain pembelajaran pythagoras berbasis pemecahan masalah sejarah matematika pada jiuzhang suanshu. Jurnal Pendidikan Matematika RAFA, 9(2), 123-136. https://doi.org/10.19109/jpmrafa.v9i2.15081
References
Abadi, & Fiangga, S. (2018). Using historical perspective in designing discovery learning on Integral for undergraduate students. IOP Conference Series: Materials Science and Engineering, 296(1). https://doi.org/10.1088/1757-899X/296/1/012042
Bakker, A., & van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. In Approaches to Qualitative Research in Mathematics Education (pp. 429–466). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9181-6_16
Chemla, K. (2012). The Mathematics of Egypt, Mesopotamia, China, India, and Islam. A sourcebook. Historia Mathematica, 39(3). https://doi.org/10.1016/j.hm.2012.04.003
Fachrudin, A. D., Ekawati, R., Kohar, A. W., Widadah, S., Kusumawati, I. B., & Setianingsih, R. (2020). The shadow reckoning problem from ancient society as context for learning Trigonometry. Journal of Physics: Conference Series, 1538(1). https://doi.org/10.1088/1742-6596/1538/1/012098
Fachrudin, A. D., Putri, R. I. I., Kohar, A. W., & Widadah, S. (2018). Developing a local instruction theory for learning the concept of solving quadratic equation using Babylonian Approach. Journal of Physics: Conference Series, 1108(1), 1–6. https://doi.org/10.1088/1742-6596/1108/1/012069
French, D. (2002). Teaching and learning algebra. Continuum. https://doi.org/10.5040/9781350933972
Freudenthal, H. (2006). Revisiting mathematics education (9th ed.). Kluwer Academic Publisher.
Guevara-Casanova, I., & Burgues-Flamarich, C. (2018). Geometry and visual reasoning. In Mathematics, Education and History (ICME-13 Mo, pp. 165–192). Springer, Cham. https://doi.org/10.1007/978-3-319-73924-3_9
Katz, V. J. (2000). Using history to teach mathematics: An internation perspective. The Mathematical Assocuiation of America.
Katz, V. J. (2008). A history of mathematics (3rd ed.). Pearson.
Lispika, L. (2022). Sejarah perkembangan matematika dalam dunia pendidikan. Journal of Arts and Education, 2(2). https://doi.org/10.33365/jae.v2i2.67
Man-Keung, S. (2000). The ABCD of using history of mathematics in the (undergraduate) classroom. Paleontological Society Papers, 6, 3–10.
OEDC. (2019). PISA 2018 : Insights and Interpretations. OECD.
Radford, L., & Guerette, G. (2016). Second degree equations in the classroom: A babylonian approach. In Using History to Teach Mathematics: An International Perspective (pp. 69–75). The Mathematical Association of America.
Radford, L., & Guérette, G. (2000). Second degree equations in the classroom: A Babylonian Approach. Using History to Yeach Mathematics : An International Perspective, 51.
Swetz, F. J., & Kao, T. I. (1977). Was pythagoras chinese?: An examination of right triangle theory in Ancient China. Pennsylvania State University Press.
Syutaridho, S. (2020). Peningkatan hasil belajar matematika dengan model discovery learning pada materi teorema pythagoras. Jurnal Pendidikan Matematika RAFA, 6(2), 185–195. https://doi.org/10.19109/jpmrafa.v6i2.4367
Wahyu, K., & Mahfudy, S. (2016). Sejarah matematika: Alternatif strategi pembelajaran matematika. Beta Jurnal Tadris Matematika, 9(1), 89–110. https://doi.org/10.20414/betajtm.v9i1.6
Yuste, P. (2010). Learning mathematics through its history. Procedia - Social and Behavioral Sciences, 2(2). https://doi.org/10.1016/j.sbspro.2010.03.161
Bakker, A., & van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. In Approaches to Qualitative Research in Mathematics Education (pp. 429–466). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9181-6_16
Chemla, K. (2012). The Mathematics of Egypt, Mesopotamia, China, India, and Islam. A sourcebook. Historia Mathematica, 39(3). https://doi.org/10.1016/j.hm.2012.04.003
Fachrudin, A. D., Ekawati, R., Kohar, A. W., Widadah, S., Kusumawati, I. B., & Setianingsih, R. (2020). The shadow reckoning problem from ancient society as context for learning Trigonometry. Journal of Physics: Conference Series, 1538(1). https://doi.org/10.1088/1742-6596/1538/1/012098
Fachrudin, A. D., Putri, R. I. I., Kohar, A. W., & Widadah, S. (2018). Developing a local instruction theory for learning the concept of solving quadratic equation using Babylonian Approach. Journal of Physics: Conference Series, 1108(1), 1–6. https://doi.org/10.1088/1742-6596/1108/1/012069
French, D. (2002). Teaching and learning algebra. Continuum. https://doi.org/10.5040/9781350933972
Freudenthal, H. (2006). Revisiting mathematics education (9th ed.). Kluwer Academic Publisher.
Guevara-Casanova, I., & Burgues-Flamarich, C. (2018). Geometry and visual reasoning. In Mathematics, Education and History (ICME-13 Mo, pp. 165–192). Springer, Cham. https://doi.org/10.1007/978-3-319-73924-3_9
Katz, V. J. (2000). Using history to teach mathematics: An internation perspective. The Mathematical Assocuiation of America.
Katz, V. J. (2008). A history of mathematics (3rd ed.). Pearson.
Lispika, L. (2022). Sejarah perkembangan matematika dalam dunia pendidikan. Journal of Arts and Education, 2(2). https://doi.org/10.33365/jae.v2i2.67
Man-Keung, S. (2000). The ABCD of using history of mathematics in the (undergraduate) classroom. Paleontological Society Papers, 6, 3–10.
OEDC. (2019). PISA 2018 : Insights and Interpretations. OECD.
Radford, L., & Guerette, G. (2016). Second degree equations in the classroom: A babylonian approach. In Using History to Teach Mathematics: An International Perspective (pp. 69–75). The Mathematical Association of America.
Radford, L., & Guérette, G. (2000). Second degree equations in the classroom: A Babylonian Approach. Using History to Yeach Mathematics : An International Perspective, 51.
Swetz, F. J., & Kao, T. I. (1977). Was pythagoras chinese?: An examination of right triangle theory in Ancient China. Pennsylvania State University Press.
Syutaridho, S. (2020). Peningkatan hasil belajar matematika dengan model discovery learning pada materi teorema pythagoras. Jurnal Pendidikan Matematika RAFA, 6(2), 185–195. https://doi.org/10.19109/jpmrafa.v6i2.4367
Wahyu, K., & Mahfudy, S. (2016). Sejarah matematika: Alternatif strategi pembelajaran matematika. Beta Jurnal Tadris Matematika, 9(1), 89–110. https://doi.org/10.20414/betajtm.v9i1.6
Yuste, P. (2010). Learning mathematics through its history. Procedia - Social and Behavioral Sciences, 2(2). https://doi.org/10.1016/j.sbspro.2010.03.161