Analisis Sentimen Masyarakat Indonesia Terhadap Aplikasi Threads di Twitter Menggunakan Naïve Baiyes

Main Article Content

Fredrick Lim
Afifah Trista Ayunda

Abstract

Threads, a new application released by Meta in mid-2023, has sparked discussions across various social media platforms. This application has been widely compared to Twitter. This research aims to analyze the sentiment of Indonesian society regarding the emergence of Threads on social media. Various opinions were collected from Twitter posts and analyzed using the Naïve Bayes algorithm in RapidMiner to classify each public response. The results show that 28.8% of respondents view the introduction of Threads positively, while 71.2% express negative sentiment. Therefore, Threads should improve its application by adding additional features to gain broader acceptance among users. Although this research has not validated using other algorithms, it provides a general overview of the public's response to the newly emerging Threads application.

Article Details

How to Cite
Lim, F., & Ayunda, A. T. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Aplikasi Threads di Twitter Menggunakan Naïve Baiyes. JUSIFO (Jurnal Sistem Informasi), 9(2), 55-64. https://doi.org/10.19109/jusifo.v9i2.19965
Section
Articles

How to Cite

Lim, F., & Ayunda, A. T. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Aplikasi Threads di Twitter Menggunakan Naïve Baiyes. JUSIFO (Jurnal Sistem Informasi), 9(2), 55-64. https://doi.org/10.19109/jusifo.v9i2.19965

References

Ajijah, N., Kurniawan, A., & Susilawati, S. (2023). Klasifikasi teks mining terhadap analisa isu kegiatan tenaga lapangan menggunakan algoritmaa k-nearest neighbor (knn). J-SAKTI (Jurnal Sains Komputer Dan Informatika), 7(1), 254–262. https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/589

Albab, M. U., P., Y. K., & Fawaiq, M. N. (2023). Optimization of the stemming technique on text preprocessing president 3 periods topic. Jurnal Transformatika, 20(2), 1–12. https://journals.usm.ac.id/index.php/transformatika/article/view/5374

Aritonang, R. M., Florestiyanto, M. Y., & Yuwono, B. (2023). Human skin disease detection using convolutional neural network method with hyperparameter tuning to determine the best parameter combination. Telematika : Jurnal Informatika Dan Teknologi Informasi, 20(2), 215–225. http://jurnal.upnyk.ac.id/index.php/telematika/article/view/9161

Asro’i, A., & Februariyanti, H. (2022). Analisis sentimen pengguna twitter terhadap perpanjangan ppkm menggunakan metode k-nearest neighbor. Jurnal Khatulistiwa Informatika, 10(1), 17–24. https://doi.org/10.31294/JKI.V10I1.12624

Chrisdiyanti, I. N. (2023). Klasifikasi review customer di e-commerce bukalapak menggunakan metode support vector machine (svm) [Universitas Telkom, S1 Sistem Informasi]. https://openlibrary.telkomuniversity.ac.id/home/catalog/id/186364/slug/klasifikasi-review-customer-di-e-commerce-bukalapak-menggunakan-metode-support-vector-machine-svm-.html

Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan algoritma naive bayes untuk analisis sentimen review data twitter bmkg nasional. Jurnal Tekno Kompak, 15(1), 131–145. https://doi.org/10.33365/JTK.V15I1.744

Dewa, C. B., & Safitri, L. A. (2021). Pemanfaatan media sosial tiktok sebagai media promosi industri kuliner di yogyakarta pada masa pandemi covid-19 (studi kasus akun tiktok javafoodie). Khasanah Ilmu - Jurnal Pariwisata Dan Budaya, 12(1), 65–71. https://doi.org/10.31294/KHI.V12I1.10132

Dwiki, A., Putra, A., & Juanita, S. (2021). Analisis sentimen pada ulasan pengguna aplikasi bibit dan bareksa dengan algoritma knn. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(2), 636–646. https://doi.org/10.35957/JATISI.V8I2.962

Febriyani, E., & Februariyanti, H. (2023). Analisis sentimen terhadap program kampus merdeka menggunakan algoritma naive bayes classifier di twitter. Jurnal Tekno Kompak, 17(1), 25–38. https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/2061

Hanifah, R., & Nurhasanah, I. S. (2018). Implementasi web crawling untuk mengumpulkan informasi wisata kuliner di bandar lampung. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 531–536. https://doi.org/10.25126/JTIIK.201855842

Herwinsyah, H., & Witanti, A. (2022). Analisis sentimen masyarakat terhadap vaksinasi covid-19 pada media sosial twitter menggunakan algoritma support vector machine (svm). Jurnal Sistem Informasi Dan Informatika (Simika), 5(1), 59–67. https://doi.org/10.47080/SIMIKA.V5I1.1411

Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis sentimen terhadap penggunaan aplikasi shopee mengunakan algoritma support vector machine (svm). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/JJEEE.V5I1.16830

Kelly, S. (2023). Meta officially launches twitter rival threads. 30 million have joined already. CNN. https://edition.cnn.com/2023/07/05/tech/meta-twitter-threads-app-instagram/index.html

Komara, D. A., & Hadiapurwa, A. (2023). Data crawling using rapidminer on twitter. Publication Library and Information Science, 6(2), 48–60. https://doi.org/10.24269/PLS.V6I2.6326

Kurniawan, J., Hartoto, H., Fahmi, A. Z., Ahyani, H., Hikmah, H., Ridwan, M., Amane, A. P. O., Afnarius, S., Priyanda, R., Arnita, A., Yudawisastra, H. G., Rosmawati, A., & Hozairi, H. (2023). Analisis dan visualisasi data. CV Widina Media Utama. https://repository.penerbitwidina.com/id/publications/560454/

Nuraini, A. F., Pertiwi, R. D., Subarkah, M. Z., & Ferawati, K. (2022). Analisis sentimen pelaksanaan vaksinasi covid-19 secara massal pada media sosial twitter. Seminar Nasional Official Statistics, 2022(1), 1385–1394. https://doi.org/10.34123/SEMNASOFFSTAT.V2022I1.1564

Nurussofiah, F. F., Karimah, U., Khodijah, S., & Hidayah, U. (2022). Penerapan media sosial sebagai media pemasaran online di era globalisasi. DEVELOPMENT: Journal of Community Engagement, 1(2), 92–108. https://doi.org/10.46773/DJCE.V1I2.329

Putri, D. D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis sentimen kinerja dewan perwakilan rakyat (dpr) pada twitter menggunakan metode naive bayes classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1), 10. https://doi.org/10.23960/JITET.V10I1.2262

Ruan, F., Hou, L., Zhang, T., & Li, H. (2020). A modified backward elimination approach for the rapid classification of Chinese ceramics using laser-induced breakdown spectroscopy and chemometrics. Journal of Analytical Atomic Spectrometry, 35(3), 518–525. https://doi.org/10.1039/C9JA00371A

Thet, T. T., Na, J. C., & Khoo, C. S. G. (2010). Aspect-based sentiment analysis of movie reviews on discussion boards. Journal of Information Science, 36(6), 823–848. https://doi.org/10.1177/0165551510388123

Tim Kompasiana. (2023). Threads yang diduga lakukan peniruan terhadap twitter. Kompasiana.Com. https://www.kompasiana.com/sofia37872/64d37146633ebc0e65488ae2/pelanggaran-etika-bisnis-threads-diduga-lakukan-peniruan-terhadap-twitter

Trianto, G. A., Marzuki, M. F., Sihotang, T. Y., & Irsyad, H. (2023). Klasifikasi opini terhadap resesi indonesia 2023 pada twitter menggunakan algoritma decesion tree. MDP Student Conference, 2(1), 1–9. https://doi.org/10.35957/MDP-SC.V2I1.3997

Wahyudi, H. W., & Sukmono, R. A. (2023). Analyzing content promotion strategies on a marketplace: a social network study. Academia Open, 8(1). https://doi.org/10.21070/ACOPEN.8.2023.4021

Wijaya, G., & Anam, K. (2023). Klasifikasi umkm menggunakan algoritma naive bayes berdasarkan sudah pernah mempunyai atau mengurus sertifikat halal. Jurnal Data Mining Dan Sistem Informasi, 4(1), 36–45. https://doi.org/10.33365/JDMSI.V4I1.2634