The Impact of Artificial Intelligence on Programmer Jobs: Threat or Opportunity?

Main Article Content

Agustia Hananto
Nadya Susanti Hasibuan
Stevi Olivia
Tukino Tukino
Elfina Novalia

Abstract

The integration of artificial intelligence (AI) into software development has significantly reshaped the programming profession. This study investigates the dual impact of AI—particularly Generative AI tools such as ChatGPT and Codex—on programming jobs, examining both the potential threats and emerging opportunities. Using a Systematic Literature Review (SLR) approach, 18 peer-reviewed articles published within the last five years were analyzed. The findings reveal that while AI automates routine tasks such as code generation, debugging, and testing—raising concerns about the reduction of entry-level roles—it simultaneously enables programmers to assume more strategic functions in AI integration, system design, and ethical governance. Additionally, AI fosters inclusive programming environments by empowering non-experts through accessible development tools. The study emphasizes the need for continuous skill enhancement, human–AI collaboration, and policy support to ensure sustainable adaptation. This research contributes to a deeper understanding of AI's transformative influence on programming and proposes strategies for thriving in an AI-augmented digital workforce.

Article Details

How to Cite
Hananto, A., Hasibuan, N. S., Olivia, S., Tukino, T., & Novalia, E. (2025). The Impact of Artificial Intelligence on Programmer Jobs: Threat or Opportunity?. JUSIFO (Jurnal Sistem Informasi), 11(1), 11-20. https://doi.org/10.19109/jusifo.v11i1.25082
Section
Articles

How to Cite

Hananto, A., Hasibuan, N. S., Olivia, S., Tukino, T., & Novalia, E. (2025). The Impact of Artificial Intelligence on Programmer Jobs: Threat or Opportunity?. JUSIFO (Jurnal Sistem Informasi), 11(1), 11-20. https://doi.org/10.19109/jusifo.v11i1.25082

References

Aarti, A. (2024). Generative ai in software development: an overview and evaluation of modern coding tools. IJFMR - International Journal for Multidisciplinary Research, 6(3). https://doi.org/10.36948/IJFMR.2024.V06I03.23271

Afandi, A. R., & Kurnia, H. (2023). Revolusi teknologi: masa depan kecerdasan buatan (ai) dan dampaknya terhadap masyarakat. Academy of Social Science and Global Citizenship Journal, 3(1), 9–13. https://doi.org/10.47200/AOSSAGCJ.V3I1.1837

Akhtar, Z. Bin. (2025). Generative artificial intelligence (gai): from large language models (llms) to multimodal applications towards fine tuning of models, implications, investigations. Computing and Artificial Intelligence, 2025(1), 1498–1498. https://doi.org/10.59400/CAI.V3I1.1498

Alief, R., & Nurmiati, E. (2022). Penerapan kecerdasan buatan dan teknologi informasi pada efisiensi manajemen pengetahuan. Jurnal Masyarakat Informatika, 13(1), 59–69. https://doi.org/10.14710/JMASIF.13.1.43760

Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the era of generative artificial intelligence (ai): understanding the potential benefits of chatgpt in promoting teaching and learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4337484

Barke, S., James, M. B., & Polikarpova, N. (2023). Grounded copilot: how programmers interact with code-generating models. Proceedings of the ACM on Programming Languages, 7(OOPSLA1). https://doi.org/10.1145/3586030

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai. Information Fusion, 58, 82–115. https://doi.org/10.1016/J.INFFUS.2019.12.012

Chen, T. (2024). The impact of ai-pair programmers on code quality and developer satisfaction: evidence from timi studio. ACM International Conference Proceeding Series, 201–205. https://doi.org/10.1145/3665348.3665383

Choquette, J., Gandhi, W., Giroux, O., Stam, N., & Krashinsky, R. (2021). Nvidia a100 tensor core gpu: performance and innovation. IEEE Micro, 41(2), 29–35. https://doi.org/10.1109/MM.2021.3061394

Denny, P., Kumar, V., & Giacaman, N. (2023). Conversing with copilot: exploring prompt engineering for solving cs1 problems using natural language. SIGCSE 2023 - Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 1, 1136–1142. https://doi.org/10.1145/3545945.3569823

Feldman, M. Q., & Anderson, C. J. (2024). Non-expert programmers in the generative ai future. ACM International Conference Proceeding Series. https://doi.org/10.1145/3663384.3663393

Ferdiana, R. (2024). The impact of artificial intelligence on programmer productivity.

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J. (2022). The robots are coming: exploring the implications of openai codex on introductory programming. ACM International Conference Proceeding Series, 10–19. https://doi.org/10.1145/3511861.3511863

Hasan, N., Polin, J. A., Ahmmed, M. R., Sakib, M. M., Jahin, M. F., & Rahman, M. M. (2024). A novel approach to analyzing the impact of ai, chatgpt, and chatbot on education using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 13(4), 2951–2958. https://doi.org/10.11591/EEI.V13I4.7158

Jones, M. L. (2004). Application of systematic review methods to qualitative research: practical issues. Journal of Advanced Nursing, 48(3), 271–278. https://doi.org/10.1111/J.1365-2648.2004.03196.X

Kazemitabaar, M., Chow, J., Ma, C. K. T., Ericson, B. J., Weintrop, D., & Grossman, T. (2023). Studying the effect of ai code generators on supporting novice learners in introductory programming. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3544548.3580919

Kuhail, M. A., Mathew, S. S., Khalil, A., Berengueres, J., & Shah, S. J. H. (2024). “Will i be replaced?” assessing chatgpt’s effect on software development and programmer perceptions of ai tools. Science of Computer Programming, 235, 103111. https://doi.org/10.1016/J.SCICO.2024.103111

Kumar, Ch. N. S., Nukala, L. D., Aswani, P., & Sujana, Y. (2024). The impact of ai tools on employment trends and skill demands. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(10), 2538–2545. https://doi.org/10.47392/IRJAEH.2024.0348

Lo, C. K. (2023). What is the impact of chatgpt on education? a rapid review of the literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/EDUCSCI13040410

Mailach, A., Gorgosch, D., Siegmund, N., & Siegmund, J. (2025). “Ok pal, we have to code that now”: interaction patterns of programming beginners with a conversational chatbot. Empirical Software Engineering, 30(1), 1–33. https://doi.org/10.1007/S10664-024-10561-6

Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2022). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334–354. https://doi.org/10.1108/IJM-03-2021-0173

Mozannar, H., Fourney, A., Bansal, G., & Horvitz, E. (2024). Reading between the lines: modeling user behavior and costs in ai-assisted programming. Conference on Human Factors in Computing Systems - Proceedings, 16. https://doi.org/10.1145/3613904.3641936

Mutaqin, R., Subroto, D. E., & Warman, C. (2024). Analisis penggunaan chat gpt (ai) dan modul pemrograman terhadap motivasi belajar dan kreativitas mahasiswa dalam mata kuliah pemrograman pada program studi pendidikan teknologi informasi, universitas bina bangsa. Jurnal Saintifik (Multi Science Journal), 22(1), 1–8. https://doi.org/10.58222/JS.V22I1.214

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of ai on developer productivity: evidence from github copilot. https://doi.org/10.48550/arXiv.2302.06590

Rahman, M. M., & Watanobe, Y. (2023). Chatgpt for education and research: opportunities, threats, and strategies. Applied Sciences 2023, Vol. 13, Page 5783, 13(9), 5783. https://doi.org/10.3390/APP13095783

Ray, B. (2023). Programming language processing: how ai can revolutionize software development? ISEC ’23: Proceedings of the 16th Innovations in Software Engineering Conference, 1–1. https://doi.org/10.1145/3578527.3581766

Rebolledo, R., De La Vall, F., & González Araya, F. (2023). Exploring the benefits and challenges of ai-language learning tools. International Journal of Social Sciences and Humanities Invention, 10(01), 7569–7576. https://doi.org/10.18535/IJSSHI/V10I01.02

Roach, J. (2022). How ai makes developers’ lives easier, and helps everybody learn to develop software. News.microsoft.com.

Ross, S. I., Martinez, F., Houde, S., Muller, M., & Weisz, J. D. (2023). The programmer’s assistant: conversational interaction with a large language model for software development. International Conference on Intelligent User Interfaces, Proceedings IUI, 491–514. https://doi.org/10.1145/3581641.3584037

Sestino, A., & De Mauro, A. (2022). Leveraging artificial intelligence in business: implications, applications and methods. Technology Analysis and Strategic Management, 34(1), 16–29. https://doi.org/10.1080/09537325.2021.1883583

Sihananto, A. N., Atmaja, P. W., & Sugiarto, S. (2024). Pemanfaatan ai dalam pembelajaran pemrograman untuk mahasiswa. Prosiding TAU SNARS-TEK Seminar Nasional Rekayasa Dan Teknologi, 4(1), 8–11. https://doi.org/10.47970/SNARSTEK.V2I1.706

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/J.JBUSRES.2019.07.039

Sucipto, H. (2024). The impact of artificial intelligence (ai) on human resource management practices. Management Studies and Business Journal (Productivity), 1(1), 138–145. https://doi.org/10.62207/XEY9MX18

Weisz, J. D., Muller, M., Houde, S., Richards, J., Ross, S. I., Martinez, F., Agarwal, M., & Talamadupula, K. (2021). Perfection not required? human-ai partnerships in code translation. International Conference on Intelligent User Interfaces, Proceedings IUI, 402–412. https://doi.org/10.1145/3397481.3450656

Weisz, J. D., Muller, M., Ross, S. I., Martinez, F., Houde, S., Agarwal, M., Talamadupula, K., & Richards, J. T. (2022). Better together? an evaluation of ai-supported code translation. International Conference on Intelligent User Interfaces, Proceedings IUI, 369–391. https://doi.org/10.1145/3490099.3511157