A Content-Based Thesis Supervisor Recommendation System Based on Research Interest Clustering and Cosine Similarity

Main Article Content

Alfina Damayanti
Fenny Purwani
Muhamad Kadafi

Abstract

The assignment of thesis supervisors is a critical academic decision that directly affects research quality and completion outcomes. However, supervisor selection in many higher education institutions remains reliant on subjective judgment and manual inspection of lecturers’ research profiles. This study proposes a content-based thesis supervisor recommendation system that integrates research interest clustering and cosine similarity to support more objective and transparent supervisor assignment. Lecturers’ research interests are derived from publication titles and abstracts collected from Google Scholar and represented using TF–IDF weighting. K-means clustering is applied to model dominant research interest themes, while cosine similarity is used to match students’ thesis proposal texts with clustered publication data. The proposed approach was implemented as a web-based decision-support system and evaluated using publication data from 21 lecturers comprising 469 records. The results indicate that research interest clustering provides a structured and interpretable representation of academic expertise, enabling contextually relevant supervisor recommendations. The system demonstrates practical value by enhancing transparency, consistency, and efficiency in academic decision-making. This study contributes to applied research on academic recommendation systems by extending publication-based approaches through cluster-level modeling of research interests.

Article Details

How to Cite
Damayanti, A., Purwani, F., & Kadafi, M. (2025). A Content-Based Thesis Supervisor Recommendation System Based on Research Interest Clustering and Cosine Similarity. JUSIFO (Jurnal Sistem Informasi), 11(2), 111-120. https://doi.org/10.19109/jusifo.v11i2.27605
Section
Articles

How to Cite

Damayanti, A., Purwani, F., & Kadafi, M. (2025). A Content-Based Thesis Supervisor Recommendation System Based on Research Interest Clustering and Cosine Similarity. JUSIFO (Jurnal Sistem Informasi), 11(2), 111-120. https://doi.org/10.19109/jusifo.v11i2.27605

References

Abbasi, A. H., Rehman, S. U., & Ali, T. (2021). Multi-criteria decision support system for recommendation of phd supervisor. Foundation University Journal of Engineering and Applied Sciences, 2(2), 60–75. https://doi.org/10.33897/FUJEAS.V2I2.491

Abidin, Z., Junaidi, A., & Wamiliana. (2024). Text stemming and lemmatization of regional languages in indonesia: a systematic literature review. Journal of Information Systems Engineering and Business Intelligence, 10(2), 217–231. https://doi.org/10.20473/JISEBI.10.2.217-231

Álvarez-García, E., García-Costa, D., & Grimaldo, F. (2022). Streamlining text pre-processing and metrics extraction. Frontiers in Artificial Intelligence and Applications, 356, 55–58. https://doi.org/10.3233/FAIA220314

Asian, J., Williams, H. E., & Tahaghoghi, S. M. M. (2007). Stemming indonesian. ACM Transactions on Asian Language Information Processing (TALIP), 38(4), 307–314. https://doi.org/10.1145/1316457.1316459

Cahyani, D. E., & Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780–2788.

Devi, F. R., Sugiharti, E., & Arifudin, R. (2018). The comparison combination of naïve bayes classification algorithm with fuzzy c-means and k-means for determining beef cattle quality in semarang regency. Scientific Journal of Informatics, 5(2), 194–204. https://doi.org/10.15294/SJI.V5I2.15452

Falah, Z. F., & Suryawan, F. (2022). Recommendation system to propose final project supervisors using cosine similarity matrix. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 8(2). https://doi.org/10.23917/KHIF.V8I2.16235

Falahudin, I., Santi, R., Ruliansyah, R., Raharjeng, A. R. P., & Marzuki, H. (2018). Pedoman penulisan skripsi fakultas sains dan teknologi uin raden fatah palembang. Fakultas Sains dan Teknologi.

Ilyasa, M. D. H., & Yamasari, Y. (2023). Perbandingan cosine similarity dan euclidean distance pada model rekomendasi buku dengan metode item-based collaborative filtering. Journal of Informatics and Computer Science (JINACS), 4(3), 264–274. https://doi.org/10.26740/jinacs.v4n03.p264-274

Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273. https://doi.org/10.1016/J.EIJ.2015.06.005

Kazakovtsev, V., Oreshin, S., Serdyukov, A., Krasheninnikov, E., Muravyov, S., Bezvinnyi, A., Panfilov, A., Glukhov, I., Kaliberda, Y., Masalskiy, D., Podolenchuk, T., & Khlopotov, M. (2020). Recommender system for an academic supervisor with a matrix normalization approach. ACM International Conference Proceeding Series, 84–87. https://doi.org/10.1145/3437802.3437817

Khairunnisa, S., Adiwijaya, A., & Faraby, S. Al. (2021). Pengaruh text preprocessing terhadap analisis sentimen komentar masyarakat pada media sosial twitter (studi kasus pandemi covid-19). Jurnal Media Informatika Budidarma, 5(2), 406–414. https://doi.org/10.30865/MIB.V5I2.2835

Kinasih, H. W., Prajanto, A., & Sartika, M. (2021). Peran dosen pembimbing dalam lulus tepat waktu mahasiswa: study pada mahasiswa akuntansi universitas x. Proceeding SENDIU.

Kirişci, M. (2022). New cosine similarity and distance measures for fermatean fuzzy sets and topsis approach. Knowledge and Information Systems, 65(2), 855–868. https://doi.org/10.1007/S10115-022-01776-4

Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A survey of recommendation systems: recommendation models, techniques, and application fields. Electronic, 11(1), 141. https://doi.org/10.3390/ELECTRONICS11010141

Li, H., & Han, D. (2020). A novel time-aware hybrid recommendation scheme combining user feedback and collaborative filtering. Mobile Information Systems, 2020(1). https://doi.org/10.1155/2020/8896694

Rianto, Mutiara, A. B., Wibowo, E. P., & Santosa, P. I. (2021). Improving the accuracy of text classification using stemming method, a case of non-formal Indonesian conversation. Journal of Big Data 2021 8:1, 8(1), 26-. https://doi.org/10.1186/S40537-021-00413-1

Rismanto, R., Syulistyo, A. R., & Agusta, B. P. C. (2020). Research supervisor recommendation system based on topic conformity. International Journal of Modern Education and Computer Science, 12(1), 26. https://doi.org/10.5815/IJMECS.2020.01.04

Roul, R. K., Sahoo, J. K., & Arora, K. (2018). Modified tf-idf term weighting strategies for text categorization. IEEE India Council International Conference. https://doi.org/10.1109/INDICON.2017.8487593

Saptono, R., Setiadi, H., Sulistyoningrum, T., & Suryani, E. (2018). Examiners recommendation system at proposal seminar of undergraduate thesis by using content-based filtering. International Conference on Advanced Computer Science and Information Systems (ICACSIS), 265–269. https://doi.org/10.1109/ICACSIS.2018.8618224

Sharma, D., Kumar, B., & Chand, S. (2021). Recommending researchers in machine learning based on author-topic model. https://doi.org/10.48550/arXiv.2109.02022

Singh, J., & Gupta, V. (2017). Text stemming: approaches, applications, and challenges. ACM Computing Surveys, 49(3). https://doi.org/10.1145/2975608