Sentiment Analysis on WeTV Application Reviews Using Naïve Bayes: A Study of Preprocessing, Balancing, and Model Performance
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
How to Cite
References
Adib, khoirul, Handayani, M. R., Yuniarti, W. D., & Umam, K. (2024). Opini publik pasca-pemilihan presiden: eksplorasi analisis sentimen media sosial x menggunakan svm. Sintech (Science and Information Technology) Journal, 7(2), 80–91. https://doi.org/10.31598/sintechjournal.v7i2.1581
Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences, 12(16), 4102–4107. https://doi.org/10.3923/JEASCI.2017.4102.4107
Alexandropoulos, S. A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. The Knowledge Engineering Review, 34, e1. https://doi.org/10.1017/S026988891800036X
Ali, H., Salleh, M. N. M., Hussain, K., Ahmad, A., Ullah, A., Muhammad, A., Naseem, R., & Khan, M. (2019). A review on data preprocessing methods for class imbalance problem. International Journal of Engineering and Technology, 8(3), 390–397.
Allorerung, P. P., & Rismayani, R. (2023). Sentiment analysis on wetv app reviews on google play store using nbc and svm algorithms. Sistemasi, 12(2), 404–414. https://doi.org/10.32520/STMSI.V12I2.2518
Elreedy, D., Atiya, A. F., & Kamalov, F. (2024). A theoretical distribution analysis of synthetic minority oversampling technique (smote) for imbalanced learning. Machine Learning, 113(7), 4903–4923. https://doi.org/10.1007/S10994-022-06296-4
Felix, E. A., & Lee, S. P. (2019). Systematic literature review of preprocessing techniques for imbalanced data. IET Software, 13(6), 479–496. https://doi.org/10.1049/IET-SEN.2018.5193
Friadi, J., & Kurniawan, D. E. (2024). Analisis sentimen ulasan wisatawan terhadap alun-alun kota batam: perbandingan kinerja metode naive bayes dan support vector machine. Jurnal Sistem Informasi Bisnis, 14(4), 403–407. https://doi.org/10.21456/VOL14ISS4PP403-407
García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4
Güner, L., Coyne, E., & Smit, J. (2019). Sentiment analysis for amazon.com reviews.
Hussein, A. S., Li, T., Yohannese, C. W., & Bashir, K. (2019). A-smote: a new preprocessing approach for highly imbalanced datasets by improving smote. International Journal of Computational Intelligence Systems, 12(2), 1412–1422. https://doi.org/10.2991/ijcis.d.191114.002
Kaburuan, E. R., Sari, Y. S., & Agustina, I. (2022). Sentiment analysis on product reviews from shopee marketplace using the naïve bayes classifier. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 13(3), 150–159. https://doi.org/10.24843/LKJITI.2022.V13.I03.P02
Kulsum, U., Jajuli, M., & Sulistiyowati, N. (2022). Analisis sentimen aplikasi wetv di google play store menggunakan algoritma support vector machine. Journal of Applied Informatics and Computing, 6(2), 205–212. https://doi.org/10.30871/JAIC.V6I2.4802
Lestari, N., Haerani, E., & Candra, R. M. (2023). Analisa sentimen ulasan aplikasi wetv untuk peningkatan layanan menggunakan metode naïve bayes. Journal of Information System Research (JOSH), 4(3), 874–882. https://doi.org/10.47065/JOSH.V4I3.3355
Madyatmadja, E. D., Candra, H., Nathaniel, J., Jonathan, M. R., & Rudy, R. (2024). Sentiment analysis on user reviews of threads applications in indonesia. Journal Europeen Des Systemes Automatises, 57(4), 1165–1171. https://doi.org/10.18280/JESA.570423
Mareby, Y. S. P., & Desanti, R. I. (2024). Exploring wetv application with naïve bayes, decision tree, and random forest classifiers for sentiment analysis. 2024 International Visualization, Informatics and Technology Conference, IVIT 2024, 35–42. https://doi.org/10.1109/IVIT62102.2024.10692731
Musu, W., Ibrahim, A., & Heriadi, H. (2021). Pengaruh komposisi data training dan testing terhadap akurasi algoritma c4.5. Sisiti: Seminar Ilmiah Sistem Informasi Dan Teknologi Informasi, 10(1), 186–195. https://doi.org/10.36774/SISITI.V10I1.802
Nurzaman, N., Suarna, N., & Prihartono, W. (2024). Analisis sentimen ulasan aplikasi threads di google playstore menggunakan algoritma naïve bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 967–974. https://doi.org/10.36040/JATI.V8I1.8708
Razaq, M. T., Nurjanah, D., & Nurrahmi, H. (2023). Analisis sentimen review film menggunakan naive bayes classifier dengan fitur tf-idf. EProceedings of Engineering, 10(2), 45–49. https://doi.org/10.5120/IJCA2017916005
Saleem, A., Asif, K. H., Ali, A., Awan, S. M., & Alghamdi, M. A. (2014). Pre-processing methods of data mining. Proceedings - 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC 2014, 451–456. https://doi.org/10.1109/UCC.2014.57
Siregar, M. Y., Wiranata, A. D., & Saputra, R. A. (2024). Analisis Sentimen Pada Ulasan Pengguna Aplikasi Streaming Vidio Menggunakan Metode Naïve Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(5), 2419–2429. https://doi.org/10.30865/KLIK.V4I5.1787
Wojciechowski, S., & Wilk, S. (2017). Difficulty factors and preprocessing in imbalanced data sets: an experimental study on artificial data. Foundations of Computing and Decision Sciences, 42(2), 149–176. https://doi.org/10.1515/FCDS-2017-0007
Yang, F. J. (2018). An implementation of naive bayes classifier. Proceedings - 2018 International Conference on Computational Science and Computational Intelligence, CSCI 2018, 301–306. https://doi.org/10.1109/CSCI46756.2018.00065