Support Vector Machine for Classifying Heart Failure, Hypertension, and Normal Heart Condition
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
How to Cite
References
Abdullah, D. M., & Abdulazeez, A. M. (2021). Machine learning applications based on svm classification a review. Qubahan Academic Journal, 1(2), 81–90. https://doi.org/10.48161/QAJ.V1N2A50
Amarappa, S., & Sathyanarayana, S. V. (2014). Data classification using support vector machine (svm), a simplified approach. International Journal of Electronics and Computer Science Engineering, 3(4).
Carey, R. M., Whelton, P. K., Aronow, W. S., Casey, D. E., Collins, K. J., Himmelfarb, C. D., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., McLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J.,
Williams, K. A., … Wright, J. T. (2018). Prevention, detection, evaluation, and management of high blood pressure in adults: synopsis of the 2017 american college of cardiology/american heart association hypertension guideline. Annals of Internal Medicine, 168(5), 351–358. https://doi.org/10.7326/M17-3203
Chong, B., Jayabaskaran, J., Jauhari, S. M., Chan, S. P., Goh, R., Kueh, M. T. W., Li, H., Chin, Y. H., Kong, G., Anand, V. V., Wang, J.-W., Muthiah, M., Jain, V., Mehta, A., Lim, S. L., Foo, R., Figtree, G. A., Nicholls, S. J., Mamas, M. A., … Chan, M. Y. (2024). Global burden of cardiovascular diseases: projections from 2025 to 2050. European Journal of Preventive Cardiology. https://doi.org/10.1093/EURJPC/ZWAE281
Cifu, A. S., & Davis, A. M. (2017). Prevention, detection, evaluation, and management of high blood pressure in adults. JAMA, 318(21), 2132–2134. https://doi.org/10.1001/JAMA.2017.18706
Galindra, Y., Astiah, A. A., & Nuralyfah, N. S. (2024). Hubungan antara derajat hipertensi dengan kualitas tidur pada pasien hipertensi di rumah sakit pmi kota bogor. Zona Kedokteran: Program Studi Pendidikan Dokter Universitas Batam, 14(2). https://doi.org/10.37776/ZKED.V14I2.1533
Ghasemi, F., & Sharifi, S. (2025). Heart failure prediction using support vector machine. International Journal of Novel Research in Life Sciences, 25(1).
Hidayaturrohman, Q. A., & Hanada, E. (2024). Impact of data pre-processing techniques on xgboost model performance for predicting all-cause readmission and mortality among patients with heart failure. BioMedInformatics, 4(4), 2201–2212. https://doi.org/10.3390/BIOMEDINFORMATICS4040118
Khan, A., Qureshi, M., Daniyal, M., & Tawiah, K. (2023). A novel study on machine learning algorithm-based cardiovascular disease prediction. Health & Social Care in the Community, 2023(1), 1406060. https://doi.org/10.1155/2023/1406060
Kumar, R., Garg, S., Kaur, R., Johar, M. G. M., Singh, S., Menon, S. V., Kumar, P., Hadi, A. M., Hasson, S. A., & Lozanović, J. (2025). A comprehensive review of machine learning for heart disease prediction: challenges, trends, ethical considerations, and future directions. Frontiers in Artificial Intelligence, 8, 1583459. https://doi.org/10.3389/FRAI.2025.1583459
Liu, Z. “Leo.” (2025). Support vector machines. In Artificial Intelligence for Engineers (pp. 129–140). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75953-6_5
Patle, A., & Chouhan, D. S. (2013). Svm kernel functions for classification. 2013 International Conference on Advances in Technology and Engineering, ICATE 2013. https://doi.org/10.1109/ICADTE.2013.6524743
Plati, D. K., Tripoliti, E. E., Bechlioulis, A., Rammos, A., Dimou, I., Lakkas, L., Watson, C., McDonald, K., Ledwidge, M., Pharithi, R., Gallagher, J., Michalis, L. K., Goletsis, Y., Naka, K. K., & Fotiadis, D. I. (2021). A machine learning approach for chronic heart failure diagnosis. Diagnostics 2021, 11(10), 1863. https://doi.org/10.3390/DIAGNOSTICS11101863
Saleem, A., Asif, K. H., Ali, A., Awan, S. M., & Alghamdi, M. A. (2014). Pre-processing methods of data mining. Proceedings - 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC 2014, 451–456. https://doi.org/10.1109/UCC.2014.57
Sandhya, Y. (2020). Prediction of heart diseases using support vector machine. 8. https://doi.org/10.22214/ijraset.2020.2021
Shihong, Y., Ping, L., & Peiyi, H. (2003). Svm classification: its contents and challenges. Applied Mathematics, 18(3), 332–342. https://doi.org/10.1007/S11766-003-0059-5
Shmilovici, A. (2023). Support vector machines. In Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook, Third Edition (pp. 93–110). Springer International Publishing. https://doi.org/10.1007/978-3-031-24628-9_6
Srivastava, D. K., & Bhambhu, L. (2010). Data classification using support vector machine. Journal of Theoretical and Applied Information Technology, 12(1).
Suryadi, S., Solikin, S., & Uni, U. (2024). Analisa faktor risiko komplikasi gagal jantung pada pasien hipertensi di rsud ulin banjarmasin. Jurnal Keperawatan Suaka Insan (JKSI), 9(2), 142–148. https://doi.org/10.51143/JKSI.V9I2.708
Wan, S., Wan, F., & Dai, X. jian. (2025). Machine learning approaches for cardiovascular disease prediction: A review. Archives of Cardiovascular Diseases. https://doi.org/10.1016/J.ACVD.2025.04.055
World Health Organization. (2021). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Yu, H., & Kim, S. (2012). Svm tutorial — classification, regression and ranking. In Handbook of Natural Computing (Vols. 1–4, pp. 479–506). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_15
Yuniarti, E. (2022). Epidemiologi gagal jantung. https://www.alomedika.com/penyakit/kardiologi/gagal-jantung/epidemiologi