Artificial Intelligence for Precision Livestock Farming: A Systematic Review of Applications, Models, and Evaluation Metrics

Main Article Content

Widyatasya Agustika Nurtrisha
Luthfi Ramadani
Riska Yanu Fa’rifah
Faqih Hamami
Nur Ichsan Utama

Abstract

The increasing demand for animal-based food products has intensified the need for efficient, data-driven livestock management practices. Artificial Intelligence (AI) has emerged as a key enabling technology within Precision Livestock Farming (PLF), supporting automated monitoring, prediction, and decision-making processes. This study presents a Systematic Literature Review (SLR) of AI applications in livestock farming, focusing on application domains, AI models, and evaluation metrics. Following the PRISMA 2020 guidelines, relevant studies published between 2013 and 2024 were systematically identified, screened, and assessed across major scholarly databases, resulting in 20 eligible articles for qualitative synthesis. The findings indicate that AI is primarily applied to animal identification, body weight estimation, disease detection, behavior analysis, and feed management. Deep learning models, particularly Convolutional Neural Networks, dominate image-based tasks, while traditional machine learning approaches remain effective for structured sensor and tabular data. Common evaluation metrics include accuracy, precision, recall, R², and Mean Absolute Error. Despite promising results, the review reveals substantial heterogeneity in datasets, evaluation protocols, and livestock sector coverage, which limits cross-study comparability. This review highlights methodological trends, identifies key research gaps, and provides insights to guide future AI-driven PLF research and implementation.

Article Details

How to Cite
Nurtrisha, W. A., Ramadani, L., Fa’rifah, R. Y., Hamami, F., & Utama, N. I. (2025). Artificial Intelligence for Precision Livestock Farming: A Systematic Review of Applications, Models, and Evaluation Metrics. JUSIFO (Jurnal Sistem Informasi), 11(2), 121-132. https://doi.org/10.19109/jusifo.v11i2.31179
Section
Articles

How to Cite

Nurtrisha, W. A., Ramadani, L., Fa’rifah, R. Y., Hamami, F., & Utama, N. I. (2025). Artificial Intelligence for Precision Livestock Farming: A Systematic Review of Applications, Models, and Evaluation Metrics. JUSIFO (Jurnal Sistem Informasi), 11(2), 121-132. https://doi.org/10.19109/jusifo.v11i2.31179

References

Alzubi, A. A., & Galyna, K. (2023). Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access, 11, 78686–78692. https://doi.org/10.1109/ACCESS.2023.3298215

Andrew, W., Greatwood, C., & Burghardt, T. (2017). Visual localisation and individual identification of holstein friesian cattle via deep learning. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2850–2859.

Anifah, L., & Haryanto, H. (2020). Decision support system cattle weight prediction using artificial selected weighting method. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE). https://doi.org/10.1109/ICVEE50212.2020.9243263

Backman, J., Koistinen, M., & Ronkainen, A. (2023). Agricultural process data as a source for knowledge: perspective on artificial intelligence. Smart Agricultural Technology, 5, 100254. https://doi.org/10.1016/J.ATECH.2023.100254

Badan Pusat Statistik. (2020). Peternakan dalam angka 2020.

Badan Pusat Statistik. (2021). Peternakan dalam angka 2021.

Bao, J., & Xie, Q. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production, 331, 129956. https://doi.org/10.1016/J.JCLEPRO.2021.129956

Benaissa, S., Tuyttens, F. A. M., Plets, D., Trogh, J., Martens, L., Vandaele, L., Joseph, W., & Sonck, B. (2020). Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors. Computers and Electronics in Agriculture, 168, 105153. https://doi.org/10.1016/J.COMPAG.2019.105153

Bezas, K., & Filippidou, F. (2023). The role of artificial intelligence and machine learning in smart and precision agriculture. The Indonesian Journal of Computer Science, 12(4), 2023–1576. https://doi.org/10.33022/IJCS.V12I4.3278

Campos, D. P., Abatti, P. J., Bertotti, F. L., De Paula Vieira, A., Hill, J. A. G., & da Silveira, A. L. F. (2019). Short-term fibre intake estimation in goats using surface electromyography of the masseter muscle. Biosystems Engineering, 183, 209–220. https://doi.org/10.1016/J.BIOSYSTEMSENG.2019.04.021

Chen, H. Y., Sharma, K., Sharma, C., & Sharma, S. (2023). Integrating explainable artificial intelligence and blockchain to smart agriculture: research prospects for decision making and improved security. Smart Agricultural Technology, 6, 100350. https://doi.org/10.1016/J.ATECH.2023.100350

Cho, Y., & Kim, J. (2023). Ai-based intelligent monitoring system for estrus prediction in the livestock industry. Applied Sciences, 13(4), 2442. https://doi.org/10.3390/APP13042442

Debauche, O., Mahmoudi, S., Andriamandroso, A. L. H., Manneback, P., Bindelle, J., & Lebeau, F. (2018). Cloud services integration for farm animals’ behavior studies based on smartphones as activity sensors. Journal of Ambient Intelligence and Humanized Computing 2018 10:12, 10(12), 4651–4662. https://doi.org/10.1007/S12652-018-0845-9

Easwaran, A., Arvindan, P., Dhanyasree, E., Surya, R., & Selvakumar, S. (2021). Internet of things enabled smart animal farm prototype. Journal of Physics: Conference Series, 2070(1), 012115. https://doi.org/10.1088/1742-6596/2070/1/012115

El-Ghamry, A., Darwish, A., & Hassanien, A. E. (2023). An optimized cnn-based intrusion detection system for reducing risks in smart farming. Internet of Things, 22, 100709. https://doi.org/10.1016/J.IOT.2023.100709

Fuentes, S., Gonzalez Viejo, C., Tongson, E., & Dunshea, F. R. (2022). The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence. Animal Health Research Reviews, 23(1), 59–71. https://doi.org/10.1017/S1466252321000177

García, R., Aguilar, J., Toro, M., Pinto, A., & Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179, 105826. https://doi.org/10.1016/J.COMPAG.2020.105826

Gjergji, M., De Moraes Weber, V., Otávio Campos Silva, L., Da Costa Gomes, R., De Araújo, T. L. A. C., Pistori, H., & Alvarez, M. (2020). Deep learning techniques for beef cattle body weight prediction. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN48605.2020.9207624

Hossain, M. E., Kabir, M. A., Zheng, L., Swain, D. L., McGrath, S., & Medway, J. (2022). A systematic review of machine learning techniques for cattle identification: datasets, methods and future directions. Artificial Intelligence in Agriculture, 6, 138–155. https://doi.org/10.1016/J.AIIA.2022.09.002

Jiang, B., Tang, W., Cui, L., & Deng, X. (2023). Precision livestock farming research: a global scientometric review. Animals, 13(13), 2096. https://doi.org/10.3390/ANI13132096/S1

Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing systematic literature reviews in software engineering. Software Engineering Group.

Lao, F., Brown-Brandl, T., Stinn, J. P., Liu, K., Teng, G., & Xin, H. (2016). Automatic recognition of lactating sow behaviors through depth image processing. Computers and Electronics in Agriculture, 125, 56–62. https://doi.org/10.1016/J.COMPAG.2016.04.026

Mahmud, M. S., Zahid, A., Das, A. K., Muzammil, M., & Khan, M. U. (2021). A systematic literature review on deep learning applications for precision cattle farming. Computers and Electronics in Agriculture, 187, 106313. https://doi.org/10.1016/J.COMPAG.2021.106313

Memon, M. H., Kumar, W., Memon, A., Chowdhry, B. S., Aamir, M., & Kumar, P. (2016). Internet of things (iot) enabled smart animal farm. 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

Mittal, H. (2021). Smart farming enabling technologies: a systematic review. In Internet of Things and Machine Learning in Agriculture. Nova Publisher, USA.

Na, M. H., Cho, W. H., Kim, S. K., & Na, I. S. (2022). Automatic weight prediction system for korean cattle using bayesian ridge algorithm on rgb-d image. Electronics, 11(10), 1663. https://doi.org/10.3390/ELECTRONICS11101663

Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensing and Bio-Sensing Research, 32, 100408. https://doi.org/10.1016/J.SBSR.2021.100408

Osrof, H. Y., Tan, C. L., Angappa, G., Yeo, S. F., & Tan, K. H. (2023). Adoption of smart farming technologies in field operations: a systematic review and future research agenda. Technology in Society, 75, 102400. https://doi.org/10.1016/J.TECHSOC.2023.102400

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N71

Paputungan, U., Hakim, L., Ciptadi, G., & Lapian, H. F. N. (2013). The estimation accuracy of live weight from metric body measurements in ongole grade cows. Journal of the Indonesian Tropical Animal Agriculture, 38(3), 149–155. https://doi.org/10.14710/JITAA.38.3.149-155

Patel, H., Samad, A., Hamza, M., Muazzam, A., & Harahap, M. K. (2022). Role of artificial intelligence in livestock and poultry farming. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 6(4), 2425–2429. https://doi.org/10.33395/SINKRON.V7I4.11837

Pretto, A., Savio, G., Gottardo, F., Uccheddu, F., & Concheri, G. (2024). A novel low-cost visual ear tag based identification system for precision beef cattle livestock farming. Information Processing in Agriculture, 11(1), 117–126. https://doi.org/10.1016/J.INPA.2022.10.003

Qiao, Y., Kong, H., Clark, C., Lomax, S., Su, D., Eiffert, S., & Sukkarieh, S. (2021). Intelligent perception for cattle monitoring: a review for cattle identification, body condition score evaluation, and weight estimation. Computers and Electronics in Agriculture, 185, 106143. https://doi.org/10.1016/J.COMPAG.2021.106143

Rana, V., Sharma, S., Thakur, K. K., Pandit, A., & Mahajan, S. (2023). Internet of things in livestock farming: implementation and challenges. https://doi.org/10.21203/RS.3.RS-2559126/V1

Ruchay, A., Kober, V., Dorofeev, K., Kolpakov, V., Gladkov, A., & Guo, H. (2022). Live weight prediction of cattle based on deep regression of rgb-d images. Agriculture, 12(11), 1794. https://doi.org/10.3390/AGRICULTURE12111794

Ruchay, A. N., Kolpakov, V. I., Kalschikov, V. V., Dzhulamanov, K. M., & Dorofeev, K. A. (2021). Predicting the body weight of Hereford cows using machine learning. IOP Conference Series: Earth and Environmental Science, 624(1), 012056. https://doi.org/10.1088/1755-1315/624/1/012056

Shephard, R. W., Hancock, A. S., Playford, M., & Oswin, S. (2022). A systematic review and meta-analysis of impact of strongyle parasitism on growth rates in young cattle. Veterinary Parasitology, 309, 109760. https://doi.org/10.1016/J.VETPAR.2022.109760

Wang, Y., Mücher, S., Wang, W., Guo, L., & Kooistra, L. (2023). A review of three-dimensional computer vision used in precision livestock farming for cattle growth management. Computers and Electronics in Agriculture, 206, 107687. https://doi.org/10.1016/J.COMPAG.2023.107687

Wang, Z., Shadpour, S., Chan, E., Rotondo, V., Wood, K. M., & Tulpan, D. (2021). Asas-nanp symposium: applications of machine learning for livestock body weight prediction from digital images. Journal of Animal Science, 99(2). https://doi.org/10.1093/JAS/SKAB022

Most read articles by the same author(s)