Analyzing Pre-Service Chemistry Teachers’ Understanding and Misconceptions of Reaction Rates Using a Four-Tier Diagnostic Instrument
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Achterberg, P., de Koster, W., & van der Waal, J. (2017). A science confidence gap: Education, trust in scientific methods, and trust in scientific institutions in the United States, 2014. Public Understanding of Science, 26(6), 704–720. https://doi.org/10.1177/0963662515617367
Adadan, E., & Oner, D. (2014). Exploring the progression in preservice chemistry teachers’ pedagogical content knowledge representations: the case of “behavior of gases.” Research in Science Education, 44(6), 829–858. https://doi.org/10.1007/s11165-014-9401-6
Ahiakwo, M. J., & Isiguzo, C. Q. (2015). Students’ conceptions and misconceptions in chemical kinetics in port harcourt metropolis of nigeria. African Journal of Chemical Education, 5(2), 112–130.
Bain, K., Bender, L., O., B., P. D., Caballero, M. D., Carmel, J. H., Duffy, E. M., Ebert-May, D., Fata-Hartley, C. L., Herrington, D. G., Laverty, J. T., Matz, R. L., Nelson, P. C., Posey, L. A., Stoltzfus, J. R., Stowe, R. L., Sweeder, R. D., Tessmer, S. H., Underwood, S. M., Urban‐Lurain, M., & Cooper, M. M. (2020). Characterizing college science instruction: the three-dimensional learning observation protocol. Plos One, 15(6), e0234640. https://doi.org/10.1371/journal.pone.0234640
Bain, K., & Towns, M. H. (2016). A review of research on the teaching and learning of chemical kinetics. Chemistry Education Research and Practice, 17(2), 246–262.
Bretz, S. L. (2001). Novak’s Theory of education: human constructivism and meaningful learning. Journal of Chemical Education, 78(8), 1107-1116. https://doi.org/10.1021/ed078p1107.6
Cakmakci, G. (2010). Identifying alternative conceptions of chemical kinetics among secondary school and undergraduate students in turkey. Journal of Chemical Education, 87(4), 449–455. https://doi.org/10.1021/ed8001336
Cakmakci, G., & Aydogdu, C. (2011). Designing and evaluating an evidence-informed instruction in chemical kinetics. Chemistry Education Research and Practice, 12(1), 15–28.
Çalik, M., & Ayas, A. (2005). A comparison of level of understanding of eighth-grade students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6), 638–667. https://doi.org/10.1002/tea.20076
Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293–307.
Cooper, M. M., & Klymkowsky, M. W. (2013). The trouble with chemical energy: why understanding bond energies requires an interdisciplinary systems approach. CBE—Life Sciences Education, 12(2), 306–312. https://doi.org/10.1187/cbe.12-10-0170
Darby-White, T., Wicker, S., & Diack, M. (2019). Evaluating the effectiveness of virtual chemistry laboratory (VCL) in enhancing conceptual understanding: Using VCL as pre-laboratory assignment. Journal of Computers in Mathematics and Science Teaching, 38(1), 31–48.
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. https://doi.org/10.1080/09500690305016
Firdaus, N. R., Kirana, T., & Susantini, E. (2021). A four-tier test to identify students’ conceptions in inheritance concepts. IJORER: International Journal of Recent Educational Research, 2(4), 402–415.
Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5–14.
Habiddin, H., & Page, E. M. (2019). Development and validation of a four-tier diagnostic instrument for chemical kinetics (FTDICK). Indonesian Journal of Chemistry, 19(3), 720–736.
Habiddin, H., & Page, E. M. (2023). Uncovering students’ genuine misconceptions: evidence to inform the teaching of chemical kinetics. Acta Chimica Slovenica, 70(2).
Inaltekin, T., & Akcay, H. (2021). Examination the knowledge of student understanding of pre-service science teachers on heat and temperature. International Journal of Research in Education and Science, 7(2), 445–478.
Johnstone, A. H., Sleet, R. J., & Vianna, J. F. (1994). An information processing model of learning: Its application to an undergraduate laboratory course in chemistry. Studies in Higher Education, 19(1), 77–87. https://doi.org/10.1080/03075079412331382163
Jusniar, J., Effendy, E., Endang, B., & Sutrisno, S. (2020). Misconceptions in rate of reaction and their impact on misconceptions in chemical equilibrium. European Journal of Educational Research, 9(4), 1405–1423.
Justi, R. (2003). Teaching and learning chemical kinetics. In J. K. Gilbert, O. Jong, R. Justi, D. F. Treagust, & J. H. Driel (Eds.), Chemical Education: Towards Research-based Practice (Vol. 17, pp. 293–315). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47977-X_13
Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas. London: Royal Society of Chemistry.
Laksono, P. J. (2018). Pengembangan dan penggunaan instrumen two-tier multiple choice pada materi termokimia untuk mengukur kemampuan berpikir kritis. Orbital: Jurnal Pendidikan Kimia, 2(2), 80–92.
Laksono, P. J. (2019). Pengembangan Three-Tier Multiple Choice Test Pada Materi Kesetimbangan Kimia Mata Kuliah Kimia Dasar Lanjut. UIN Raden Fatah Press.
Leonard, M. J., Kalinowski, S. T., & Andrews, T. C. (2014). Misconceptions yesterday, today, and tomorrow. CBE—Life Sciences Education, 13(2), 179–186. https://doi.org/10.1187/cbe.13-12-0244
Lestari, L. A., Subandi, S., & Habiddin, H. (2021). Identifikasi miskonsepsi siswa pada materi laju reaksi dan perbaikannya menggunakan model pembelajaran learning cycle 5E dengan strategi konflik kognitif. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(6), 888-894.
Liebermeister, W., & Klipp, E. (2006). Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints. Theoretical Biology and Medical Modelling, 3(1), 41. https://doi.org/10.1186/1742-4682-3-41
Markic, S., & Eilks, I. (2013). Potential changes in prospective chemistry teachers’ beliefs about teaching and learning—a cross-level study. International Journal of Science and Mathematics Education, 11(4), 979–998. https://doi.org/10.1007/s10763-013-9417-9
Maskiewicz, A. C., & Lineback, J. E. (2013). Misconceptions are “so yesterday!” CBE—Life Sciences Education, 12(3), 352–356. https://doi.org/10.1187/cbe.13-01-0014
Nieswandt, M. (2007). Student affect and conceptual understanding in learning chemistry. Journal of Research in Science Teaching, 44(7), 908–937. https://doi.org/10.1002/tea.20169
Plass, J. L., Milne, C., Homer, B. D., Schwartz, R. N., Hayward, E. O., Jordan, T., Verkuilen, J., Ng, F., Wang, Y., & Barrientos, J. (2012). Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3), 394–419. https://doi.org/10.1002/tea.21008
Rahmawati, Y., Widhiyanti, T., & Mardiah, A. (2019). Analisis miskonsepsi mahasiswa calon guru kimia pada konsep particulate of matter. JTK (Jurnal Tadris Kimiya), 4(2), 121–135.
Sanger, M. J., & Greenbowe, T. J. (1999). An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. Journal of Chemical Education, 76(6), 853-860. https://doi.org/10.1021/ed076p853
Sugiyono, S. (2018). Metode Penelitian Pendidikan Pendekatan Kualitatif, Kuantitatif dan R & D. Alfabeta, Bandung.
Taber, K. (2002). Chemical misconceptions: Prevention, diagnosis and cure (Vol. 1). Royal Society of Chemistry.
Taber, K. S. (2017). The nature of student conceptions in science. In Science education: An international course companion (pp. 119–131). SensePublishers Rotterdam.
Tal, M., Herscovitz, O., & Dori, Y. J. (2021). Assessing teachers’ knowledge: Incorporating context-based learning in chemistry. Chemistry Education Research and Practice, 22(4), 1003–1019.
Talanquer, V. (2023). What have we learned about student reasoning in chemistry? Educación Química, 34(4), 3–15.
Taştan, Ö., Yalçinkaya, E., & Boz, Y. (2010). Pre-Service Chemistry Teachers’ Ideas about Reaction Mechanism. Journal of Turkish Science Education (TUSED), 7(1), 47-60
Tümay, H. (2016). Reconsidering learning difficulties and misconceptions in chemistry: Emergence in chemistry and its implications for chemical education. Chemistry Education Research and Practice, 17(2), 229–245.
Voska, K. W., & Heikkinen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160–176.
Wang, C., OuYang, J., & Wu, F. (2021). Subgroups of assessor and assessee: the relationship between students’ peer assessment roles and perceptions of MSCL in science education. Journal of Science Education and Technology, 30(6), 816–828. https://doi.org/10.1007/s10956-021-09922-3
Wardah, A. C., Wiyarsi, A., & Prodjosantoso, A. K. (2020). Analysis of prospective chemistry teachers’ understanding about rate of reaction concept. Journal of Physics: Conference Series, 1440(1), 242-246. https://iopscience.iop.org/article/10.1088/1742-6596/1440/1/012004/meta
Wu, H., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821–842. https://doi.org/10.1002/tea.1033
Yonata, B. (2021). Four-Tier Diagnostic Test on Chemical Kinetics Concepts for Undergraduate Students. International Joint Conference on Science and Engineering 2021 (IJCSE 2021), 457–463. https://www.atlantis-press.com/proceedings/ijcse-21/125966491