GC-MS Analysis and In-silico Molecular Docking study of Skin Fruit Arabica Coffee (Coffea arabica L.) Methanol Extract as Mosquito Repellent english

Main Article Content

Rita Maliza
Husna Fitri
Bramadi Arya

Abstract

Malaria is an endemic disease that is still a problem globally, especially in countries with tropical and subtropical climates. People generally use mosquito repellents from synthetic materials, but they still cause effects and toxicity. Using active compounds from plants is an alternative to developing mosquito repellents. The 30 active compounds from the GC-MS analysis of methanol extract of Arabica coffee skin fruit and we selected the highest percentage compound, namely n-Hexadecanoic acid, Caffeine, Hexadecanoic acid methyl ester, 3-O-Methyl-d-glucose and desulphosinigrin. The highest compounds were carried out by molecular docking with Odorant binding protein 1 (OBP1) as the protein target and N, N-Diethyl-3-methylbenzamide (DEET) as the native ligand. Desulphosinigrin has the highest binding affinity, which is -6.2 Kcal/mol, close to the native ligand DEET. It can be concluded that the active compound desulphosinigrin has the potential as a repellent. This study concludes that active compounds from the methanol extract of Arabica coffee skin have the potential as a repellent.

Downloads

Download data is not yet available.

Article Details

How to Cite
GC-MS Analysis and In-silico Molecular Docking study of Skin Fruit Arabica Coffee (Coffea arabica L.) Methanol Extract as Mosquito Repellent: english. (2023). Jurnal Biota, 9(2), 127-135. https://doi.org/10.19109/Biota.v9i2.17589
Section
Artikel

How to Cite

GC-MS Analysis and In-silico Molecular Docking study of Skin Fruit Arabica Coffee (Coffea arabica L.) Methanol Extract as Mosquito Repellent: english. (2023). Jurnal Biota, 9(2), 127-135. https://doi.org/10.19109/Biota.v9i2.17589

References

Affonso, R. da S., Guimarães, A. P., Oliveira, A. A., Slana, G. B. C., & França, T. C. C. (2013). Applications of molecular modeling in the design of new insect repellents targeting the odorant binding protein of Anopheles gambiae. Journal of the Brazilian Chemical Society, 24(3), 473–482. https://doi.org/10.1590/s0103-50532013000300015
Alim, A., Adam, A., & Dimi, B. (2020). Prevalensi Malaria Berdasarkan Karakteristik Sosio Demografi. Jurnal Ilmiah Kesehatan, 19(01), 4–9. https://doi.org/10.33221/jikes.v19i01.399
Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., & Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, 5(4), 324–331. https://doi.org/10.1016/j.imr.2016.09.001
Geremu, M., Tola, Y. B., & Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3(1), 1–6. https://doi.org/10.1186/s40538-016-0077-1
Ghavami, M. B., Khoeini, S., & Djadid, N. D. (2020). Molecular characteristics of odorant-binding protein 1 in Anopheles maculipennis. Malaria Journal, 19(1), 1–10. https://doi.org/10.1186/s12936-019-3058-6
Kartini, S., Pratiwi, D., & Atina, Z. (2020). Uji Mortalitas Larva Nyamuk Anopheles Dengan Pemberian Ekstrak Etanol Daun Salam (Syzygium polyantum). Klinikal Sains : Jurnal Analis Kesehatan, 8(1), 41–48. https://doi.org/10.36341/klinikal_sains.v8i1.1319
Masruri, A., Sumono, A., & Ca, T. I. (2019). Arabica Coffee (Coffea Arabica) Fruit Skin Potential Towards the Increase of Fibroblast Cells Amount Within Socket Post Tooth Extraction of Male Wistar Mouse Ahmad. Health Notions, 3(6), 273–278.
Muleme, H. M., Reguera, R. M., Berard, A., Azinwi, R., Jia, P., Okwor, I. B., Beverley, S., & Uzonna, J. E. (2009). 基因的改变NIH Public Access. J Immunol., 23(1), 1–7.
Murphy, E. J., Booth, J. C., Davrazou, F., Port, A. M., & Jones, D. N. M. (2013). Interactions of anopheles gambiae odorant-binding proteins with a human-derived repellent: Implications for the mode of action of N,N-diethyl-3-methylbenzamide (DEET). Journal of Biological Chemistry, 288(6), 4475–4485. https://doi.org/10.1074/jbc.M112.436386
Nathan, S. S., Kalaivani, K., & Murugan, K. (2005). Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Tropica, 96(1), 47–55. https://doi.org/10.1016/j.actatropica.2005.07.002
Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 6(2), 153–162. https://doi.org/10.1016/S1369-703X(00)00084-X
Reichembach, L. H., & de Oliveira Petkowicz, C. L. (2020). Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydrate Polymers, 245(June), 116473. https://doi.org/10.1016/j.carbpol.2020.116473
Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
Varma, A. K., Patil, R., Das, S., Stanley, A., Yadav, L., & Sudhakar, A. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug-Designing. PLoS ONE, 5(8). https://doi.org/10.1371/journal.pone.0012029
White, S. A., Briand, L., Scott, D. J., & Borysik, A. J. (2009). Structure of rat odorant-binding protein OBP1 at 1.6 Å resolution. Acta Crystallographica Section D: Biological Crystallography, 65(5), 403–410. https://doi.org/10.1107/S090744490900420X
World Health Organization. (2011). Malaria Report 2011. Switzerland: WHO Press
World Health Organization. (2019). Malaria, URL:https://www.who.int/news-room/fact-sheets/detail/malaria. Accesed on dates 21 August 2019.