System of Leukocytes Respiratory Burst Activity (RBA) in Grouper (Epinephelus coioides)

Main Article Content

Anggraini Ratih Purwandari
Dwi Nur Rikhma Sari

Abstract

Probiotics are live microbes that can help protect and maintain the health of the host by modifying the microbial community or associating with the host, increasing the response to disease, improving nutrition, and utilizing feed. Probiotics have properties to increase feed efficiency and increase non-specific immunity in fish. Probiotic administration allows fish to achieve optimal growth and increase immunity to disease. Therefore, in this study used probiotics containing bacteria Bacillus subtilis. The purpose of  this study was to determine the effect of probiotic Bacillus subtilis endoprore administration on the respiratory burst activity (RBA) immune system in grouper (Epinephelus coioides). The results of the research showed that the administration of probiotics in the grouper (Epinehelus coioides) feed with the probiotic dose of Bacillus subtilis in Feed B (0.1% Bacillus subtilis) and Feed C (1 % Bacillus subtilis) had a significantly effect on Respiratory Burst Activity (RBA) compared to Feed A (0% Bacillus subtilis). In addition, the administration of probiotic Bacillus subtilis in the grouper feed was also able to increase the total number of bacteria in the rearing media, whereas an increasing in the number of bacteria in the B and C feed treatments indicated a better rearing media for the growth of grouper. The RBA values ​​in Feed B (0.1% Bacillus subtilis) and Feed C (1 % Bacillus subtilis) were significantly different start from 10 days of rearing time. While the best dose for the RBA value is Feed C with an elapsed time 30 days.

Downloads

Download data is not yet available.

Article Details

How to Cite
System of Leukocytes Respiratory Burst Activity (RBA) in Grouper (Epinephelus coioides). (2022). Jurnal Biota, 8(1), 25-32. https://doi.org/10.19109/Biota.v8i1.9884
Section
Artikel

How to Cite

System of Leukocytes Respiratory Burst Activity (RBA) in Grouper (Epinephelus coioides). (2022). Jurnal Biota, 8(1), 25-32. https://doi.org/10.19109/Biota.v8i1.9884

References

Abreu, J., Marzocchi-Machado, C., Urbaczek, A., Fonseca, L., & Urbinati, E. (2009). Leukocytes respiratory burst and lysozyme level in pacu (Piaractus mesopotamicus Holmberg, 1887). Brazilian Journal of Biology, 69(4), 1133–1139. https://doi.org/10.1590/s1519-69842009000500018
Afiyanti, A. D., Yuliani, M. G. A., & Handijatno, D. (2019). Leukocyte Count and Differential Leukocyte Count of Carp (Cyprinus carpio Linn) after Infected by Aeromonas salmonicida. Icps, 545–549. https://doi.org/10.5220/0007546705450549
Araujo, G. H., Gorlach-Lira, K., Medeiros, D. S., & Sassi, C. F. C. (2015). Physicochemical and bacteriological seawater quality and sustainability of Cabo Branco (Brazil) coral reef. Pan-American Journal of Aquatic Sciences, 10(2), 94–104.
Biller, J. D., & Takahashi, L. S. (2018). Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. Anais Da Academia Brasileira de Ciencias, 90(4), 3403–3414. https://doi.org/10.1590/0001-3765201820170730
Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. In Environmental Microbiology (Vol. 8, Issue 7, pp. 1137–1144). https://doi.org/10.1111/j.1462-2920.2006.01054.x
Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. ángel, & Esteban, M. ángeles. (2013). Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish & Shellfish Immunology, 34(5), 1063–1070. https://doi.org/10.1016/J.FSI.2013.01.015
Daly, J. G., Moore, A. R., & Olivier, G. (1995). A colorimetric assay for the quantification of brook trout (Salvelinus fontinalis) lymphocyte mitogenesis. Fish & Shellfish Immunology, 5(4), 265–273. https://doi.org/10.1006/FSIM.1995.0026
Diepen, J. C. E. K. (1993). Characterisation of fish leucocytes. https://edepot.wur.nl/201160
Ferdynan Sumule, J., & Trisnawati Tobigo, D. (2017). Aplikasi Probiotik Pada Media Pemeliharaan Terhadap Pertumbuhan Dan Sintasan Ikan Nila Merah (Oreochromis sp.). J. Agrisains, 18(1), 1–12.
Geng, X., Dong, X. H., Tan, B. P., Yang, Q. H., Chi, S. Y., Liu, H. Y., & Liu, X. Q. (2011). Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish & Shellfish Immunology, 31(3), 400–406. https://doi.org/10.1016/J.FSI.2011.06.006
Hameed, U., Muhammad, A. B., Jahngeer, A., & Ikram, U. (2015). Determination of Microbial load of Drinking Water from different areas of Lahore. Biologia (Pakistan), 61(1), 151–156.
Hu, K., Zhang, J.-X., Feng, L., Jiang, W.-D., Wu, P., Liu, Y., Jiang, J., & Zhou, X.-Q. (2015). Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian). Fish Physiology and Biochemistry 2015 41:3, 41(3), 635–649. https://doi.org/10.1007/S10695-015-0034-0
Liu, C.-H., Wu, K., Chu, T.-W., & Wu, T.-M. (2017). Dietary supplementation of probiotic, Bacillus subtilis E20, enhances the growth performance and disease resistance against Vibrio alginolyticus in parrot fish (Oplegnathus fasciatus). Aquaculture International 2017 26:1, 26(1), 63–74. https://doi.org/10.1007/S10499-017-0189-Z
Maftuch, M. (2018). Hematological Analysis of Nile Tilapia (Oreochromis niloticus) and Striped Catfish (Pangasius hypophthalmus) using Hematology Analyzer Tool Software at Fish Breeding Center Jojogan, Tuban, East Java. Research Journal of Life Science, 5(2), 107–115. https://doi.org/10.21776/ub.rjls.2018.005.02.4
Muñoz-Atienza, E., Araújo, C., Lluch, N., Hernández, P. E., Herranz, C., Cintas, L. M., & Magadán, S. (2015). Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. Fish & Shellfish Immunology, 44(1), 214–223. https://doi.org/10.1016/J.FSI.2015.02.021
Naidenko, S. V., Klyuchnikova, P. S., Kirilyuk, V. E., & Alekseeva, G. S. (2020). Effect of population density on number of leukocytes in domestic cats. Nature Conservation Research, 5(2), 89–96. https://doi.org/10.24189/ncr.2020.021
Nair, A. V., Leo Antony, M., Praveen, N. K., Sayooj, P., Raja Swaminathan, T., & Vijayan, K. K. (2021). Evaluation of in vitro and in vivo potential of Bacillus subtilis MBTDCMFRI Ba37 as a candidate probiont in fish health management. Microbial Pathogenesis, 152, 104610. https://doi.org/10.1016/J.MICPATH.2020.104610
Olmos, J., Acosta, M., Mendoza, G., & Pitones, V. (2019). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of Microbiology 2019 202:3, 202(3), 427–435. https://doi.org/10.1007/S00203-019-01757-2
Olmos, J., & Paniagua-Michel, J. (2014). Bacillus subtilis A Potential Probiotic Bacterium to Formulate Functional Feeds for Aquaculture. J Microb Biochem Technol, 6(7), 361–365. https://doi.org/10.4172/1948-5948.1000169
Rawling, M. D., Merrifield, D. L., Snellgrove, D. L., Kühlwein, H., Adams, A., & Davies, S. J. (2012). Haemato-immunological and growth response of mirror carp (Cyprinus carpio) fed a tropical earthworm meal in experimental diets. Fish & Shellfish Immunology, 32(6), 1002–1007. https://doi.org/10.1016/J.FSI.2012.02.020
Rieger, A. M., & Barreda, D. R. (2011). Antimicrobial mechanisms of fish leukocytes. Developmental & Comparative Immunology, 35(12), 1238–1245. https://doi.org/10.1016/J.DCI.2011.03.009
Rossi, F., Bellavite, P., & Berton, G. (1982). the Respiratory Burst in Phagocytic Leukocytes. Phagocytosis–Past and Future, January, 167–191. https://doi.org/10.1016/b978-0-12-400050-6.50016-6
Sakai, M. (1999). Current research status of fish immunostimulants. Aquaculture, 172(1–2), 63–92. https://doi.org/10.1016/S0044-8486(98)00436-0
Secombes, C. J. (2011). Fish immunity: The potential impact on vaccine development and performance. Aquaculture Research, 42(SUPPL. 1), 90–92. https://doi.org/10.1111/J.1365-2109.2010.02673.X
Talpur, A. D., Munir, M. B., Mary, A., & Hashim, R. (2014). Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture, C(426–427), 14–20. https://doi.org/10.1016/J.AQUACULTURE.2014.01.013
Zaineldin, A. I., Hegazi, S., Koshio, S., Ishikawa, M., Bakr, A., El-Keredy, A. M. S., Dawood, M. A. O., Dossou, S., Wang, W., & Yukun, Z. (2018). Bacillus subtilis as probiotic candidate for red sea bream: Growth performance, oxidative status, and immune response traits. Fish & Shellfish Immunology, 79, 303–312. https://doi.org/10.1016/J.FSI.2018.05.035

Most read articles by the same author(s)