Characterization of Ozone Distribution in Distilled Water and Coconut Water Produced Using a Double Dielectric Barrier Discharge Machine
Main Article Content
Abstract
Ozone produced using plasma technology can act as an antimicrobial agent that could be applied in a sterilization process. A Double Dielectric Barrier Discharge (DDBD) machine has ability to produce ozone in sufficient amount for microbial inactivation. The objective of this study is to characterize the ozone distribution expressed as dissolved ozone in distilled water and coconut water produced using a DDBD machine. The information can be useful for industries to design a commercial sterilization process. The results shows that an oxygen flow rate of 0.2 L/min produces the highest ozone concentration, i.e. 3440 mg/L. In addition, the capacity of the machine is relatively similar to all off oxygen flow rate, i.e., 41.28-43.2 g/hour. The oxygen flow rate of 0.2 L/min produces the highest dissolved ozone concentration, i.e. 0.42 mg/L distilled water. This oxygen flow rate is followed by its best kinetic model based on its linear portion during dissolved ozone penetration. A zero order model could describe this penetration process well, including its best k value of 0.0292 mg/L per minute with the highest dissolved ozone concentration among other oxygen flow rates. Besides, distilled water could represent dissolved ozone penetration in coconut water. Ozone gas and dissolved ozone concentration have possitive corellation with R-square value of 0.8934.
Downloads
Download data is not yet available.
Article Details
How to Cite
Characterization of Ozone Distribution in Distilled Water and Coconut Water Produced Using a Double Dielectric Barrier Discharge Machine. (2023). Jurnal Biota, 9(2), 80-96. https://doi.org/10.19109/Biota.v9i2.16714
Section
Artikel
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
How to Cite
Characterization of Ozone Distribution in Distilled Water and Coconut Water Produced Using a Double Dielectric Barrier Discharge Machine. (2023). Jurnal Biota, 9(2), 80-96. https://doi.org/10.19109/Biota.v9i2.16714
References
Alchoubassi, G., Kińska, K., Bierla, K., Lobinski, R., & Szpunar, J. (2021). Speciation of essential nutrient trace elements in coconut water. Food Chemistry, 339, 127680. https://doi.org/10.1016/j.foodchem.2020.127680
Ateia, M., Ceccato, M., Budi, A., Ataman, E., Yoshimura, C., & Johnson, M. S. (2018). Ozone-assisted regeneration of magnetic carbon nanotubes for removing organic water pollutants. Chemical Engineering Journal, 335, 384–391. https://doi.org/10.1016/j.cej.2017.10.166
Chasanah, U., Yulianto, E., Zain, A. Z., Sasmita, E., Restiwijaya, M., Kinandana, A. W., Arianto, F., & Nur, M. (2019). Evaluation of Titration Method on Determination of Ozone Concentration produced by Dielectric Barrier Discharge Plasma (DBDP) Technology. Journal of Physics: Conference Series, 1153, 012086. https://doi.org/10.1088/1742-6596/1153/1/012086
Cheong, H. S., Choi, J. Y., Bong, C.-W., Bak, M. S., & Ko, K. S. (2021). PHI-004—Effectiveness of ozone generated by dielectric barrier discharge plasma reactor against multidrug-resistant bacteria and Clostridium difficile spore. Abstracts from the 13th International Symposium on Antimicrobial Agents and Resistance (ISAAR 2021), 58, 2100412. https://doi.org/10.1016/j.ijantimicag.2021.106421.141
Coulibaly, W. H., Camara, F., Tohoyessou, M. G., Konan, P. A. K., Coulibaly, K., Yapo, E. G. A. S., & Wiafe, M. A. (2023). Nutritional profile and functional properties of coconut water marketed in the streets of Abidjan (Côte d’Ivoire). Scientific African, 20, e01616. https://doi.org/10.1016/j.sciaf.2023.e01616
Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Thissera, B., Mackay, W., Rateb, M. E., & Yaseen, M. (2022). Bacterial and fungal disinfection via ozonation in air. Journal of Microbiological Methods, 194, 106431. https://doi.org/10.1016/j.mimet.2022.106431
Hernández-Torres, C. J., Reyes-Acosta, Y. K., Chávez-González, M. L., Dávila-Medina, M. D., Kumar Verma, D., Martínez-Hernández, J. L., Narro-Céspedes, R. I., & Aguilar, C. N. (2021). Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi Journal of Biological Sciences, 29(4), 1957–1980. https://doi.org/10.1016/j.sjbs.2021.12.023
Hu, X.-R., Wang, Y.-C., Tong, Z., Wang, C., Duan, E.-H., Han, M.-F., Hsi, H.-C., & Deng, J.-G. (2023). Degradation of trichloroethylene by double dielectric barrier discharge (DDBD) plasma technology: Performance, product analysis and acute biotoxicity assessment. Chemosphere, 329, 138651. https://doi.org/10.1016/j.chemosphere.2023.138651
Islam, M. D. D., Rahaman, A., & Afrose, A. (2021). Assessment of Heavy Metal Concentration in Coconut Water. Recent Research in Science and Technology, 10(0). https://doi.org/10.25081/rrst.2018.10.3370
Kebede, B. T., Grauwet, T., Magpusao, J., Palmers, S., Michiels, C., Hendrickx, M., & Loey, A. V. (2015). An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree. Food Chemistry, 179, 94–102. https://doi.org/10.1016/j.foodchem.2015.01.074
Kumar, M., Saini, S. S., Agrawal, P. K., Roy, P., & Sircar, D. (2021). Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. Journal of Food Composition and Analysis, 96, 103738. https://doi.org/10.1016/j.jfca.2020.103738
Laflamme, O., Sérodes, J.-B., Simard, S., Legay, C., Dorea, C., & Rodriguez, M. J. (2020). Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. Chemosphere, 260, 127660. https://doi.org/10.1016/j.chemosphere.2020.127660
Li, M., Yan, Y., Jin, Q., Liu, M., Zhu, B., Wang, L., Li, T., Tang, X.-J., & Zhu, Y.-M. (2018). Experimental study on ozone generation from oxygen in double surface dielectric barrier discharge. Vacuum, 157, 249–258. https://doi.org/10.1016/j.vacuum.2018.08.058
Li, X., & Farid, M. (2016). A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering, 182, 33–45. https://doi.org/10.1016/j.jfoodeng.2016.02.026
Liu, N., Lin, W., Ma, J., Xu, W., & Xu, X. (2019). Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. Journal of Environmental Sciences, 77, 291–302. https://doi.org/10.1016/j.jes.2018.08.009
Maftuhah, S., Rahardian, A., Masfufah, M., Yulianto, E., Sumariyah, S., & Nur, M. (2020). Experimental study on medical ozone generation in double dielectric barrier discharge(DDBD) with spiral-spiral electrodes. AIP Conference Proceedings, 2197(1), 040003. https://doi.org/10.1063/1.5140908
Mahayothee, B., Koomyart, I., Khuwijitjaru, P., Siriwongwilaichat, P., Nagle, M., & Müller, J. (2016). Phenolic Compounds, Antioxidant Activity, and Medium Chain Fatty Acids Profiles of Coconut Water and Meat at Different Maturity Stages. International Journal of Food Properties, 19(9), 2041–2051. https://doi.org/10.1080/10942912.2015.1099042
Mikeš, J., Pekárek, S., & Dzik, P. (2023). Catalytic and time stability effects of photocatalysts on ozone production of a surface dielectric barrier discharge in air. Catalysis Communications, 174, 106576. https://doi.org/10.1016/j.catcom.2022.106576
Mouele, E. S. M., Tijani, J. O., Badmus, K. O., Pereao, O., Babajide, O., Fatoba, O. O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Laatikainen, K., & Petrik, L. F. (2021). A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 9(5), 105758. https://doi.org/10.1016/j.jece.2021.105758
Naik, M., C. K., S., Rawson, A., & N, V. (2020). Tender Coconut Water: A Review on Recent Advances in Processing and Preservation. Food Reviews International, 1–22. https://doi.org/10.1080/87559129.2020.1785489
Naveena, B., & Nagaraju, M. (2020). Review on principles, effects, advantages and disadvantages of high pressure processing of food. International Journal of Chemical Studies, 8(2).
Nur, M., Susan, A. I., Muhlisin, Z., Arianto, F., Kinandana, A. W., Nurhasanah, I., Sumariyah, S., Wibawa, P. J., Gunawan, G., & Usman, A. (2017). Evaluation of Novel Integrated Dielectric Barrier Discharge Plasma as Ozone Generator. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1), 24–31. https://doi.org/10.9767/bcrec.12.1.605.24-31
Okyere, A. Y., Rajendran, S., & Annor, G. A. (2022). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Research in Food Science, 5, 451–463. https://doi.org/10.1016/j.crfs.2022.02.007
Porto, E., Alves Filho, E. G., Silva, L. M. A., Fonteles, T. V., do Nascimento, R. B. R., Fernandes, F. A. N., de Brito, E. S., & Rodrigues, S. (2020). Ozone and plasma processing effect on green coconut water. Food Research International, 131, 109000. https://doi.org/10.1016/j.foodres.2020.109000
Prades, A., Dornier, M., Diop, N., & Pain, J.-P. (2012). Coconut water preservation and processing: A review. Fruits, 67(3), 157–171. Cambridge Core. https://doi.org/10.1051/fruits/2012009
Raj CT, D., Palaninathan, V., & James, R. A. (2023). Anti-uropathogenic, antioxidant and struvite crystallization inhibitory potential of fresh and fermented coconut water. Biocatalysis and Agricultural Biotechnology, 47, 102555. https://doi.org/10.1016/j.bcab.2022.102555
Rajashri, K., Roopa, B. S., Negi, P. S., & Rastogi, N. K. (2020). Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities, and shelf life of tender coconut water. Journal of Food Processing and Preservation, 44(3), e14363. https://doi.org/10.1111/jfpp.14363
Restiwijaya, M., Hendrini, A. R., Dayana, B., Yulianto, E., Kinandana, A. W., Arianto, F., Sasmita, E., Azam, M., & Nur, M. (2019). New development of double dielectric barrier discharge (DBD) plasma reactor for medical. Journal of Physics: Conference Series, 1170, 012020. https://doi.org/10.1088/1742-6596/1170/1/012020
Saber, K., Abahazem, A., Merbahi, N., & Yousfi, M. (2022). Plasma energy efficiency in tip-to-plane air corona discharges at atmospheric pressure. Journal of Electrostatics, 115, 103642. https://doi.org/10.1016/j.elstat.2021.103642
Sanito, R. C., You, S.-J., & Wang, Y.-F. (2022). Degradation of contaminants in plasma technology: An overview. Journal of Hazardous Materials, 424, 127390. https://doi.org/10.1016/j.jhazmat.2021.127390
Shezi, S., Samukelo Magwaza, L., Mditshwa, A., & Zeray Tesfay, S. (2020). Changes in biochemistry of fresh produce in response to ozone postharvest treatment. Scientia Horticulturae, 269, 109397. https://doi.org/10.1016/j.scienta.2020.109397
Torlak, E., & Isik, M. K. (2018). Efficacy of Gaseous Ozone Against Paenibacillus Larvae Spores on Hive Materials. Etlik Veteriner Mikrobiyoloji Dergisi, 29(1), Article 1. https://doi.org/10.35864/evmd.512928
Verinda, S. B., Muniroh, M., Yulianto, E., Maharani, N., Gunawan, G., Amalia, N. F., Hobley, J., Usman, A., & Nur, M. (2022). Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: Spectroscopic, kinetics, and antibacterial analysis. Heliyon, 8(8), e10137. https://doi.org/10.1016/j.heliyon.2022.e10137
Wood, J. P., Wendling, M., Richter, W., & Rogers, J. (2020). The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLOS ONE, 15(5), e0233291. https://doi.org/10.1371/journal.pone.0233291
Yulianto, E., Restiwijaya, M., Sasmita, E., Arianto, F., Kinandana, A. W., & Nur, M. (2019). Power analysis of ozone generator for high capacity production. Journal of Physics: Conference Series, 1170, 012013. https://doi.org/10.1088/1742-6596/1170/1/012013
Zahar, I., Sumariyah, Yuliyanto, E., Arianto, F., Yuliani, Puspita, M., & Nur, M. (2019). Optimation of ozone capacity produced by DBD plasma reactor: Dedicated for cold storage. Journal of Physics: Conference Series, 1217(1), 012006. https://doi.org/10.1088/1742-6596/1217/1/012006
Zain, A. Z., Restiwijaya, M., Hendrini, A. R., Dayana, B., Yulianto, E., Kinandana, A. W., Arianto, F., Sasmita, E., Azam, M., Sumariyah, S., Nasrudin, N., & Nur, M. (2019). Development of ozone reactor for medicine base on Dielectric Barrier Discharge (DBD) plasma. Journal of Physics: Conference Series, 1153, 012089. https://doi.org/10.1088/1742-6596/1153/1/012089
Zhang, F., Xi, J., Huang, J.-J., & Hu, H.-Y. (2013). Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology, 114, 126–133. https://doi.org/10.1016/j.seppur.2013.04.034
Ateia, M., Ceccato, M., Budi, A., Ataman, E., Yoshimura, C., & Johnson, M. S. (2018). Ozone-assisted regeneration of magnetic carbon nanotubes for removing organic water pollutants. Chemical Engineering Journal, 335, 384–391. https://doi.org/10.1016/j.cej.2017.10.166
Chasanah, U., Yulianto, E., Zain, A. Z., Sasmita, E., Restiwijaya, M., Kinandana, A. W., Arianto, F., & Nur, M. (2019). Evaluation of Titration Method on Determination of Ozone Concentration produced by Dielectric Barrier Discharge Plasma (DBDP) Technology. Journal of Physics: Conference Series, 1153, 012086. https://doi.org/10.1088/1742-6596/1153/1/012086
Cheong, H. S., Choi, J. Y., Bong, C.-W., Bak, M. S., & Ko, K. S. (2021). PHI-004—Effectiveness of ozone generated by dielectric barrier discharge plasma reactor against multidrug-resistant bacteria and Clostridium difficile spore. Abstracts from the 13th International Symposium on Antimicrobial Agents and Resistance (ISAAR 2021), 58, 2100412. https://doi.org/10.1016/j.ijantimicag.2021.106421.141
Coulibaly, W. H., Camara, F., Tohoyessou, M. G., Konan, P. A. K., Coulibaly, K., Yapo, E. G. A. S., & Wiafe, M. A. (2023). Nutritional profile and functional properties of coconut water marketed in the streets of Abidjan (Côte d’Ivoire). Scientific African, 20, e01616. https://doi.org/10.1016/j.sciaf.2023.e01616
Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Thissera, B., Mackay, W., Rateb, M. E., & Yaseen, M. (2022). Bacterial and fungal disinfection via ozonation in air. Journal of Microbiological Methods, 194, 106431. https://doi.org/10.1016/j.mimet.2022.106431
Hernández-Torres, C. J., Reyes-Acosta, Y. K., Chávez-González, M. L., Dávila-Medina, M. D., Kumar Verma, D., Martínez-Hernández, J. L., Narro-Céspedes, R. I., & Aguilar, C. N. (2021). Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi Journal of Biological Sciences, 29(4), 1957–1980. https://doi.org/10.1016/j.sjbs.2021.12.023
Hu, X.-R., Wang, Y.-C., Tong, Z., Wang, C., Duan, E.-H., Han, M.-F., Hsi, H.-C., & Deng, J.-G. (2023). Degradation of trichloroethylene by double dielectric barrier discharge (DDBD) plasma technology: Performance, product analysis and acute biotoxicity assessment. Chemosphere, 329, 138651. https://doi.org/10.1016/j.chemosphere.2023.138651
Islam, M. D. D., Rahaman, A., & Afrose, A. (2021). Assessment of Heavy Metal Concentration in Coconut Water. Recent Research in Science and Technology, 10(0). https://doi.org/10.25081/rrst.2018.10.3370
Kebede, B. T., Grauwet, T., Magpusao, J., Palmers, S., Michiels, C., Hendrickx, M., & Loey, A. V. (2015). An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree. Food Chemistry, 179, 94–102. https://doi.org/10.1016/j.foodchem.2015.01.074
Kumar, M., Saini, S. S., Agrawal, P. K., Roy, P., & Sircar, D. (2021). Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. Journal of Food Composition and Analysis, 96, 103738. https://doi.org/10.1016/j.jfca.2020.103738
Laflamme, O., Sérodes, J.-B., Simard, S., Legay, C., Dorea, C., & Rodriguez, M. J. (2020). Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. Chemosphere, 260, 127660. https://doi.org/10.1016/j.chemosphere.2020.127660
Li, M., Yan, Y., Jin, Q., Liu, M., Zhu, B., Wang, L., Li, T., Tang, X.-J., & Zhu, Y.-M. (2018). Experimental study on ozone generation from oxygen in double surface dielectric barrier discharge. Vacuum, 157, 249–258. https://doi.org/10.1016/j.vacuum.2018.08.058
Li, X., & Farid, M. (2016). A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering, 182, 33–45. https://doi.org/10.1016/j.jfoodeng.2016.02.026
Liu, N., Lin, W., Ma, J., Xu, W., & Xu, X. (2019). Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. Journal of Environmental Sciences, 77, 291–302. https://doi.org/10.1016/j.jes.2018.08.009
Maftuhah, S., Rahardian, A., Masfufah, M., Yulianto, E., Sumariyah, S., & Nur, M. (2020). Experimental study on medical ozone generation in double dielectric barrier discharge(DDBD) with spiral-spiral electrodes. AIP Conference Proceedings, 2197(1), 040003. https://doi.org/10.1063/1.5140908
Mahayothee, B., Koomyart, I., Khuwijitjaru, P., Siriwongwilaichat, P., Nagle, M., & Müller, J. (2016). Phenolic Compounds, Antioxidant Activity, and Medium Chain Fatty Acids Profiles of Coconut Water and Meat at Different Maturity Stages. International Journal of Food Properties, 19(9), 2041–2051. https://doi.org/10.1080/10942912.2015.1099042
Mikeš, J., Pekárek, S., & Dzik, P. (2023). Catalytic and time stability effects of photocatalysts on ozone production of a surface dielectric barrier discharge in air. Catalysis Communications, 174, 106576. https://doi.org/10.1016/j.catcom.2022.106576
Mouele, E. S. M., Tijani, J. O., Badmus, K. O., Pereao, O., Babajide, O., Fatoba, O. O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Laatikainen, K., & Petrik, L. F. (2021). A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 9(5), 105758. https://doi.org/10.1016/j.jece.2021.105758
Naik, M., C. K., S., Rawson, A., & N, V. (2020). Tender Coconut Water: A Review on Recent Advances in Processing and Preservation. Food Reviews International, 1–22. https://doi.org/10.1080/87559129.2020.1785489
Naveena, B., & Nagaraju, M. (2020). Review on principles, effects, advantages and disadvantages of high pressure processing of food. International Journal of Chemical Studies, 8(2).
Nur, M., Susan, A. I., Muhlisin, Z., Arianto, F., Kinandana, A. W., Nurhasanah, I., Sumariyah, S., Wibawa, P. J., Gunawan, G., & Usman, A. (2017). Evaluation of Novel Integrated Dielectric Barrier Discharge Plasma as Ozone Generator. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1), 24–31. https://doi.org/10.9767/bcrec.12.1.605.24-31
Okyere, A. Y., Rajendran, S., & Annor, G. A. (2022). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Research in Food Science, 5, 451–463. https://doi.org/10.1016/j.crfs.2022.02.007
Porto, E., Alves Filho, E. G., Silva, L. M. A., Fonteles, T. V., do Nascimento, R. B. R., Fernandes, F. A. N., de Brito, E. S., & Rodrigues, S. (2020). Ozone and plasma processing effect on green coconut water. Food Research International, 131, 109000. https://doi.org/10.1016/j.foodres.2020.109000
Prades, A., Dornier, M., Diop, N., & Pain, J.-P. (2012). Coconut water preservation and processing: A review. Fruits, 67(3), 157–171. Cambridge Core. https://doi.org/10.1051/fruits/2012009
Raj CT, D., Palaninathan, V., & James, R. A. (2023). Anti-uropathogenic, antioxidant and struvite crystallization inhibitory potential of fresh and fermented coconut water. Biocatalysis and Agricultural Biotechnology, 47, 102555. https://doi.org/10.1016/j.bcab.2022.102555
Rajashri, K., Roopa, B. S., Negi, P. S., & Rastogi, N. K. (2020). Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities, and shelf life of tender coconut water. Journal of Food Processing and Preservation, 44(3), e14363. https://doi.org/10.1111/jfpp.14363
Restiwijaya, M., Hendrini, A. R., Dayana, B., Yulianto, E., Kinandana, A. W., Arianto, F., Sasmita, E., Azam, M., & Nur, M. (2019). New development of double dielectric barrier discharge (DBD) plasma reactor for medical. Journal of Physics: Conference Series, 1170, 012020. https://doi.org/10.1088/1742-6596/1170/1/012020
Saber, K., Abahazem, A., Merbahi, N., & Yousfi, M. (2022). Plasma energy efficiency in tip-to-plane air corona discharges at atmospheric pressure. Journal of Electrostatics, 115, 103642. https://doi.org/10.1016/j.elstat.2021.103642
Sanito, R. C., You, S.-J., & Wang, Y.-F. (2022). Degradation of contaminants in plasma technology: An overview. Journal of Hazardous Materials, 424, 127390. https://doi.org/10.1016/j.jhazmat.2021.127390
Shezi, S., Samukelo Magwaza, L., Mditshwa, A., & Zeray Tesfay, S. (2020). Changes in biochemistry of fresh produce in response to ozone postharvest treatment. Scientia Horticulturae, 269, 109397. https://doi.org/10.1016/j.scienta.2020.109397
Torlak, E., & Isik, M. K. (2018). Efficacy of Gaseous Ozone Against Paenibacillus Larvae Spores on Hive Materials. Etlik Veteriner Mikrobiyoloji Dergisi, 29(1), Article 1. https://doi.org/10.35864/evmd.512928
Verinda, S. B., Muniroh, M., Yulianto, E., Maharani, N., Gunawan, G., Amalia, N. F., Hobley, J., Usman, A., & Nur, M. (2022). Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: Spectroscopic, kinetics, and antibacterial analysis. Heliyon, 8(8), e10137. https://doi.org/10.1016/j.heliyon.2022.e10137
Wood, J. P., Wendling, M., Richter, W., & Rogers, J. (2020). The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLOS ONE, 15(5), e0233291. https://doi.org/10.1371/journal.pone.0233291
Yulianto, E., Restiwijaya, M., Sasmita, E., Arianto, F., Kinandana, A. W., & Nur, M. (2019). Power analysis of ozone generator for high capacity production. Journal of Physics: Conference Series, 1170, 012013. https://doi.org/10.1088/1742-6596/1170/1/012013
Zahar, I., Sumariyah, Yuliyanto, E., Arianto, F., Yuliani, Puspita, M., & Nur, M. (2019). Optimation of ozone capacity produced by DBD plasma reactor: Dedicated for cold storage. Journal of Physics: Conference Series, 1217(1), 012006. https://doi.org/10.1088/1742-6596/1217/1/012006
Zain, A. Z., Restiwijaya, M., Hendrini, A. R., Dayana, B., Yulianto, E., Kinandana, A. W., Arianto, F., Sasmita, E., Azam, M., Sumariyah, S., Nasrudin, N., & Nur, M. (2019). Development of ozone reactor for medicine base on Dielectric Barrier Discharge (DBD) plasma. Journal of Physics: Conference Series, 1153, 012089. https://doi.org/10.1088/1742-6596/1153/1/012089
Zhang, F., Xi, J., Huang, J.-J., & Hu, H.-Y. (2013). Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology, 114, 126–133. https://doi.org/10.1016/j.seppur.2013.04.034