Genetic Variations of Fennel (Foeniculum vulgare Mill.) Based on Inter-Simple Sequence Repeats (ISSR) Marker
Main Article Content
Abstract
Foeniculum vulgare Mill., commonly known as fennel, has been utilized by Indonesian community for various purposes, from culinary to medicinal applications. The primary constituent of its chemical composition is the essential oil belonging to the monoterpene class, comprising more than 80% of its content. Genetic information plays a crucial role in determining the identity of a plant species. This information can also serve as a fundamental basis for conservation and plant breeding purposes. The aim of the research to determine the genetic diversity of F. vulgare. This study utilized fennel from six different locations. DNA examination of fennels used the Inter-Simple Sequence Repeats (ISSR) marker. Cluster analysis of binary data on DNA fragment scores used Jaccard similarity coefficient and UPGMA method as basis. The average polymorphism was 86.11%. The study indicated that the genetic variability of F. vulgare samples from the six locations fell within the moderate category. The results of this study open opportunities for further research in finding specific molecular markers to identify F. vulgare with its potential adulterant species.
Downloads
Download data is not yet available.
Article Details
How to Cite
Genetic Variations of Fennel (Foeniculum vulgare Mill.) Based on Inter-Simple Sequence Repeats (ISSR) Marker. (2024). Jurnal Biota, 10(1), 15-23. https://doi.org/10.19109/Biota.v10i1.20667
Section
Artikel

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
How to Cite
Genetic Variations of Fennel (Foeniculum vulgare Mill.) Based on Inter-Simple Sequence Repeats (ISSR) Marker. (2024). Jurnal Biota, 10(1), 15-23. https://doi.org/10.19109/Biota.v10i1.20667
References
[1] H. P. Kusumaningrum et al., “Relationship Between Phylogenetic of Apium and Foeniculum Plants from Central Java, Indonesia, and Their Secondary Metabolites Potency against COVID-19 Protease,” Open Access Maced. J. Med. Sci., vol. 10, no. A, pp. 1234–1241, Jul. 2022, doi: 10.3889/OAMJMS.2022.9852.
[2] M. A. Rather, B. A. Dar, S. N. Sofi, B. A. Bhat, and M. A. Qurishi, “Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety,” Arab. J. Chem., vol. 9, pp. S1574–S1583, Nov. 2016, doi: 10.1016/J.ARABJC.2012.04.011.
[3] N. Mehra, G. Tamta, and V. Nand, “A review on nutritional value, phytochemical and pharmacological attributes of Foeniculum vulgare Mill,” J. Pharmacogn. Phytochem., vol. 10, no. 2, pp. 1255–1263, Mar. 2021, doi: 10.22271/PHYTO.2021.V10.I2Q.13983.
[4] L. A. Umartani and M. S. Nahdi, “Ethnobotanical Study of Edible Plant Communities on the Slopes of Mount Merapi and Merbabu, Indonesia,” Biol. Med. Nat. Prod. Chem., vol. 10, no. 1, pp. 33–39, Jul. 2021, doi: 10.14421/BIOMEDICH.2021.101.33-39.
[5] P. Borotová et al., “Biological activity of essential oil from Foeniculum vulgare,” Acta Hortic. Regiotect., vol. 24, pp. 148–152, 2021, doi.org/10.2478/ahr-2021-0037.
[6] F. Karami, D. Dastan, M. Fallah, and M. R. Matini, “In Vitro Activity of Foeniculum vulgare and Its Main Essential Oil Component Trans-Anethole on Trichomonas vaginalis,” Iran. J. Parasitol., vol. 14, pp. 631–638, 2019, doi.org/10.18502/ijpa.v14i4.2106.
[7] S. A. Mina, M. M. Bishr, H. Hassan, and S. A. Khalik, “Impact of Foliar Spray of Ethephon, Water Stress, Organic and Inorganic Fertilizers on The Essential Oil Composition of Foeniculum vulgare Roots.,” 2020.
[8] V. Ilardi, N. Badalamenti, and M. Bruno, “Chemical composition of the essential oil from different vegetative parts of Foeniculum vulgare subsp. piperitum (Ucria) Coutinho (Umbelliferae) growing wild in Sicily,” Nat. Prod. Res., vol. 36, pp. 3587–3597, 2021, doi.org/10.1080/14786419.2020.1870227.
[9] L. Kalavari, N. Nasiri, F. Ahmadian, and H. Kioumarsi, “Enrichment of Doogh with Olive Leaf Extract and Investigation of Its Physicochemical, Microbial, and Sensory Properties during Storage at Room Temperature and Refrigerator,” J. Multidiscip. Appl. Nat. Sci., vol. 3, no. 1, pp. 34–42, Aug. 2022, doi: 10.47352/jmans.2774-3047.143.
[10] A. Amiza et al., “A Concise Review on Toxicity and Pharmacological Aspects of Foeniculum vulgare with Emphasis on Anti-Cancer Potential,” Asian J. Res. Pharm. Sci., 2022, doi.org/10.52711/2231-5659.2022.00013.
[11] B. Boumaaza et al., “Effectiveness of Essential Oils from Three Medicinal Plants Against Bayoud Disease (Fusarium oxysporum f. sp. albedinis) of Date Palm (Phoenix dactylifera L.),” Diyala Agric. Sci. J., 2022, doi.org/10.52951/dasj.22142003.
[12] M. Montazeri et al., “Antiparasitic Effects of Heracleum persicum and Foeniculum vulgare (Fruit) Essential Oils on Experimental Toxoplasmosis (In Vitro and In Vivo),” J. Mazandaran Univ. Med. Sci., vol. 31, pp. 1–10, 2021.
[13] M. Di Napoli et al., “Antimicrobial, Antibiofilm, and Antioxidant Properties of Essential Oil of Foeniculum vulgare Mill. Leaves,” Plants, vol. 11, 2022, doi.org/10.3390/plants11243573.
[14] A. Sanei-Dehkordi, A. Abdollahi, M. Safari, F. Karami, G. Ghaznavi, and M. Osanloo, “Nanogels Containing Foeniculum vulgare Mill. and Mentha piperita L. Essential Oils: Mosquitoes’ Repellent Activity and Antibacterial Effect,” Interdiscip. Perspect. Infect. Dis., vol. 2022, 2022, doi.org/10.1155/2022/4510182.
[15] R. Wanna and P. Khaengkhan, “Insecticidal Activity of Essential Oil from Seeds of Foeniculum vulgare (Apiales: Apiaceae) Against Sitophilus zeamais (Coleoptera: Curculionidae) and Its Effects on Crop Seed Germination,” J. Entomol. Sci., vol. 58, no. 1, pp. 104–116, Jan. 2023, doi.org/10.18474/JES22-13.
[16] A. G. Osman, V. Raman, S. Haider, Z. Ali, A. G. Chittiboyina, and I. A. Khan, “Overview of Analytical Tools for the Identification of Adulterants in Commonly Traded Herbs and Spices,” J. AOAC Int., vol. 102, no. 2, pp. 376–385, Mar. 2019, doi.org/10.5740/jaoacint.18-0389.
[17] R. Felipe De Almeida et al., “Barking up the wrong tree: the importance of morphology in plant molecular phylogenetic studies,” bioRxiv, p. 2023.01.30.526223, Feb. 2023, doi:10.1101/2023.01.30.526223.
[18] A. Negi, A. Pare, and R. Meenatchi, “Emerging techniques for adulterant authentication in spices and spice products,” Food Control, vol. 127, p. 108113, Sep. 2021, doi.org/10.1016/j.foodcont.2021.108113.
[19] X. Meng, Q. Fu, S. Luan, K. Luo, J. Sui, and J. Kong, “Genome survey and high-resolution genetic map provide valuable genetic resources for Fenneropenaeus chinensis,” Sci. Rep. 2021 111, vol. 11, no. 1, pp. 1–12, Apr. 2021, doi:10.1038/s41598-021-87237-4.
[20] M. Ramgiri and R. Nair, “Evaluation of Fennel (Foeniculum vulgare Mill) Genotypes for Seed Yield and its Attributing Traits in Madhya Pradesh,” Int. J. Curr. Microbiol. Appl. Sci., vol. 9, no. 3, pp. 742–746, Mar. 2020, doi:10.20546/IJCMAS.2020.903.089.
[21] M. Elbaz, S. Ben Abdesslem, O. Ben Moussa, M. Boulares, M. Timoumi, and M. Hassouna, “Value adding search among a selection of Tunisian fennel (Foeniculum vulgare Mill.) cultivars: Diversity assessment and selection among a local fennel germplasm,” J. OASIS Agric. Sustain. Dev., vol. 4, no. 2, pp. 93–103, Jun. 2022, doi:10.56027/JOASD.SPISS132022.
[22] G. Yaldiz and M. Camlica, “Breeding improvement of fennel genotypes of different origins (Foeniculum vulgare L.) using morphological and yield parameters,” Int. J. Agric. Nat. Resour., vol. 49, no. 2, pp. 97–111, 2022, doi:10.7764/ijanr.v49i2.2345.
[23] W. Ramadan, R. Shoaib, R. Ali, and N. Abdel-Samea, “Assessment of genetic diversity among some fennel cultivars (Foeniculum vulgare Mill.) by ISSR and SCoT Markers,” Afr. J. Biol. Sci., vol. 15, no. 1, pp. 219–234, 2019, doi:10.21608/ajbs.2019.72270.
[24] M. Križman and J. Jakše, “Chemical and Genetic Variability of Istrian Foeniculum vulgare Wild Populations,” Plants, vol. 11, no. 17, 2022, doi:10.3390/plants11172239.
[25] M. Sharma and Meena, “Genetic Diversity in Fennel (Foeniculum Vulgare Mill),” Int. J. Sci. Res., vol. 2, no. 8, pp. 3–4, 2012, doi:10.15373/22778179/aug2013/2.
[26] Ø. Hammer, D. A. T. Harper, and P. D. Ryan, “PAST - PAlaeontological STatistics, ver. 1.79,” no. 1999, pp. 1–87, 2008.
[27] A. Atika Marpaung and R. Susandarini, “Genetic Diversity of Dicranopteris and Sticherus from Rokan Hulu, Riau Based on ISSR Marker,” J. Trop. Biodivers. Biotechnol., vol. 7, no. 1, p. 66552, Jan. 2022, doi:10.22146/jtbb.66552.
[28] E. Hosseini, M. M. Majidi, M. H. Ehtemam, and M. Ghanadian, “Variation in a worldwide collection of fennel (Foeniculum vulgare var. vulgare),” vol. 72, no. 12, pp. 1008–1021, 2021, doi:10.1071/CP21149.
[29] S. Saraçli and M. Akşit, “Comparison of Hierarchic Clustering Methods with Cophenetic Correlation Coefficient in Big Data,” AKU J Sci Eng, vol. 22, no. 031302, pp. 552–559, 2022, doi:10.35414/akufemubid.1018302.
[30] O. L. S. de Oliveira, C. A. F. de Melo, and M. M. Souza, “Searching for intraspecific chromosomic variation in Passiflora L. species,” Biologia (Bratisl.), vol. 76, no. 9, pp. 2467–2476, 2021, doi:10.1007/s11756-021-00773-2.
[31] Y. H. Zhong et al., “Variation of Chromosome Composition in a Full-Sib Population Derived From 2x × 3x Interploidy Cross of Populus,” Front. Plant Sci., vol. 12, p. 816946, Jan. 2022, doi:10.3389/FPLS.2021.816946/BIBTEX.
[32] M. Podwyszyńska, K. Mynett, M. Markiewicz, S. Pluta, and A. Marasek-Ciołakowska, “Chromosome Doubling in Genetically Diverse Bilberry (Vaccinium myrtillus L.) Accessions and Evaluation of Tetraploids in Terms of Phenotype and Ability to Cross with Highbush Blueberry (V. corymbosum L.),” Agronomy, 2021.
[33] C. Osuna-Mascaró, A. C. Agneray, L. M. Galland, E. A. Leger, and T. L. Parchman, “Fine-scale spatial genetic structure in a locally abundant native bunchgrass (Achnatherum thurberianum) including distinct lineages revealed within seed transfer zones,” Evol. Appl., vol. 16, no. 5, pp. 979–996, 2023, doi.org/10.1111/eva.13547.
[34] D. Gamba and N. Muchhala, “Global patterns of population genetic differentiation in seed plants,” Mol. Ecol., vol. 29, no. 18, pp. 3413–3428, Sep. 2020, doi:10.1111/MEC.15575.
[35] M. Martos-Fuentes, C. Egea-Gilabert, I. Mezaka, J. A. Fernández, M. Egea-Cortines, and J. Weiss, “Distance analysis among northern and southern European legume accessions using next-generation sequencing reveal discrepancies between geographic and genetic origins,” Sci. Hortic., vol. 243, pp. 498–505, 2019, doi:10.1016/J.Scienta.2018.09.007.
[36] V. Allan, S. Geetha, M. Vetriventhan, and V. C. R. Azevedo, “Genetic diversity analysis of geographically diverse landraces and wild accessions in sorghum,” Electron. J. Plant Breed., vol. 11, no. 03, pp. 760–764, Sep. 2020, doi:10.37992/2020.1103.125.
[37] Y. D. Jo et al., “Mitotypes Based on Structural Variation of Mitochondrial Genomes Imply Relationships With Morphological Phenotypes and Cytoplasmic Male Sterility in Peppers,” Front. Plant Sci., vol. 10, 2019, doi:10.3389/FPLS.2019.01343.
[38] V. Cambiaso, G. R. Rodríguez, and D. M. Francis, “Propagation Fidelity and Kinship of Tomato Varieties ‘UC 82’ and ‘M82’ Revealed by Analysis of Sequence Variation,” Agron. 2020 Vol 10 Page 538, vol. 10, no. 4, p. 538, 2020, doi:10.3390/AGRONOMY10040538.
[39] Z. Poudineh, B. A. Fakheri, A. R. Sirosmehr, and S. Shojaei, “Genetic and morphological diversity of fennel by using ISSR marker and biplot analysis,” Indian J. Plant Physiol., vol. 23, no. 3, pp. 564–572, 2018, doi:10.1007/s40502-018-0390-8.
[2] M. A. Rather, B. A. Dar, S. N. Sofi, B. A. Bhat, and M. A. Qurishi, “Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety,” Arab. J. Chem., vol. 9, pp. S1574–S1583, Nov. 2016, doi: 10.1016/J.ARABJC.2012.04.011.
[3] N. Mehra, G. Tamta, and V. Nand, “A review on nutritional value, phytochemical and pharmacological attributes of Foeniculum vulgare Mill,” J. Pharmacogn. Phytochem., vol. 10, no. 2, pp. 1255–1263, Mar. 2021, doi: 10.22271/PHYTO.2021.V10.I2Q.13983.
[4] L. A. Umartani and M. S. Nahdi, “Ethnobotanical Study of Edible Plant Communities on the Slopes of Mount Merapi and Merbabu, Indonesia,” Biol. Med. Nat. Prod. Chem., vol. 10, no. 1, pp. 33–39, Jul. 2021, doi: 10.14421/BIOMEDICH.2021.101.33-39.
[5] P. Borotová et al., “Biological activity of essential oil from Foeniculum vulgare,” Acta Hortic. Regiotect., vol. 24, pp. 148–152, 2021, doi.org/10.2478/ahr-2021-0037.
[6] F. Karami, D. Dastan, M. Fallah, and M. R. Matini, “In Vitro Activity of Foeniculum vulgare and Its Main Essential Oil Component Trans-Anethole on Trichomonas vaginalis,” Iran. J. Parasitol., vol. 14, pp. 631–638, 2019, doi.org/10.18502/ijpa.v14i4.2106.
[7] S. A. Mina, M. M. Bishr, H. Hassan, and S. A. Khalik, “Impact of Foliar Spray of Ethephon, Water Stress, Organic and Inorganic Fertilizers on The Essential Oil Composition of Foeniculum vulgare Roots.,” 2020.
[8] V. Ilardi, N. Badalamenti, and M. Bruno, “Chemical composition of the essential oil from different vegetative parts of Foeniculum vulgare subsp. piperitum (Ucria) Coutinho (Umbelliferae) growing wild in Sicily,” Nat. Prod. Res., vol. 36, pp. 3587–3597, 2021, doi.org/10.1080/14786419.2020.1870227.
[9] L. Kalavari, N. Nasiri, F. Ahmadian, and H. Kioumarsi, “Enrichment of Doogh with Olive Leaf Extract and Investigation of Its Physicochemical, Microbial, and Sensory Properties during Storage at Room Temperature and Refrigerator,” J. Multidiscip. Appl. Nat. Sci., vol. 3, no. 1, pp. 34–42, Aug. 2022, doi: 10.47352/jmans.2774-3047.143.
[10] A. Amiza et al., “A Concise Review on Toxicity and Pharmacological Aspects of Foeniculum vulgare with Emphasis on Anti-Cancer Potential,” Asian J. Res. Pharm. Sci., 2022, doi.org/10.52711/2231-5659.2022.00013.
[11] B. Boumaaza et al., “Effectiveness of Essential Oils from Three Medicinal Plants Against Bayoud Disease (Fusarium oxysporum f. sp. albedinis) of Date Palm (Phoenix dactylifera L.),” Diyala Agric. Sci. J., 2022, doi.org/10.52951/dasj.22142003.
[12] M. Montazeri et al., “Antiparasitic Effects of Heracleum persicum and Foeniculum vulgare (Fruit) Essential Oils on Experimental Toxoplasmosis (In Vitro and In Vivo),” J. Mazandaran Univ. Med. Sci., vol. 31, pp. 1–10, 2021.
[13] M. Di Napoli et al., “Antimicrobial, Antibiofilm, and Antioxidant Properties of Essential Oil of Foeniculum vulgare Mill. Leaves,” Plants, vol. 11, 2022, doi.org/10.3390/plants11243573.
[14] A. Sanei-Dehkordi, A. Abdollahi, M. Safari, F. Karami, G. Ghaznavi, and M. Osanloo, “Nanogels Containing Foeniculum vulgare Mill. and Mentha piperita L. Essential Oils: Mosquitoes’ Repellent Activity and Antibacterial Effect,” Interdiscip. Perspect. Infect. Dis., vol. 2022, 2022, doi.org/10.1155/2022/4510182.
[15] R. Wanna and P. Khaengkhan, “Insecticidal Activity of Essential Oil from Seeds of Foeniculum vulgare (Apiales: Apiaceae) Against Sitophilus zeamais (Coleoptera: Curculionidae) and Its Effects on Crop Seed Germination,” J. Entomol. Sci., vol. 58, no. 1, pp. 104–116, Jan. 2023, doi.org/10.18474/JES22-13.
[16] A. G. Osman, V. Raman, S. Haider, Z. Ali, A. G. Chittiboyina, and I. A. Khan, “Overview of Analytical Tools for the Identification of Adulterants in Commonly Traded Herbs and Spices,” J. AOAC Int., vol. 102, no. 2, pp. 376–385, Mar. 2019, doi.org/10.5740/jaoacint.18-0389.
[17] R. Felipe De Almeida et al., “Barking up the wrong tree: the importance of morphology in plant molecular phylogenetic studies,” bioRxiv, p. 2023.01.30.526223, Feb. 2023, doi:10.1101/2023.01.30.526223.
[18] A. Negi, A. Pare, and R. Meenatchi, “Emerging techniques for adulterant authentication in spices and spice products,” Food Control, vol. 127, p. 108113, Sep. 2021, doi.org/10.1016/j.foodcont.2021.108113.
[19] X. Meng, Q. Fu, S. Luan, K. Luo, J. Sui, and J. Kong, “Genome survey and high-resolution genetic map provide valuable genetic resources for Fenneropenaeus chinensis,” Sci. Rep. 2021 111, vol. 11, no. 1, pp. 1–12, Apr. 2021, doi:10.1038/s41598-021-87237-4.
[20] M. Ramgiri and R. Nair, “Evaluation of Fennel (Foeniculum vulgare Mill) Genotypes for Seed Yield and its Attributing Traits in Madhya Pradesh,” Int. J. Curr. Microbiol. Appl. Sci., vol. 9, no. 3, pp. 742–746, Mar. 2020, doi:10.20546/IJCMAS.2020.903.089.
[21] M. Elbaz, S. Ben Abdesslem, O. Ben Moussa, M. Boulares, M. Timoumi, and M. Hassouna, “Value adding search among a selection of Tunisian fennel (Foeniculum vulgare Mill.) cultivars: Diversity assessment and selection among a local fennel germplasm,” J. OASIS Agric. Sustain. Dev., vol. 4, no. 2, pp. 93–103, Jun. 2022, doi:10.56027/JOASD.SPISS132022.
[22] G. Yaldiz and M. Camlica, “Breeding improvement of fennel genotypes of different origins (Foeniculum vulgare L.) using morphological and yield parameters,” Int. J. Agric. Nat. Resour., vol. 49, no. 2, pp. 97–111, 2022, doi:10.7764/ijanr.v49i2.2345.
[23] W. Ramadan, R. Shoaib, R. Ali, and N. Abdel-Samea, “Assessment of genetic diversity among some fennel cultivars (Foeniculum vulgare Mill.) by ISSR and SCoT Markers,” Afr. J. Biol. Sci., vol. 15, no. 1, pp. 219–234, 2019, doi:10.21608/ajbs.2019.72270.
[24] M. Križman and J. Jakše, “Chemical and Genetic Variability of Istrian Foeniculum vulgare Wild Populations,” Plants, vol. 11, no. 17, 2022, doi:10.3390/plants11172239.
[25] M. Sharma and Meena, “Genetic Diversity in Fennel (Foeniculum Vulgare Mill),” Int. J. Sci. Res., vol. 2, no. 8, pp. 3–4, 2012, doi:10.15373/22778179/aug2013/2.
[26] Ø. Hammer, D. A. T. Harper, and P. D. Ryan, “PAST - PAlaeontological STatistics, ver. 1.79,” no. 1999, pp. 1–87, 2008.
[27] A. Atika Marpaung and R. Susandarini, “Genetic Diversity of Dicranopteris and Sticherus from Rokan Hulu, Riau Based on ISSR Marker,” J. Trop. Biodivers. Biotechnol., vol. 7, no. 1, p. 66552, Jan. 2022, doi:10.22146/jtbb.66552.
[28] E. Hosseini, M. M. Majidi, M. H. Ehtemam, and M. Ghanadian, “Variation in a worldwide collection of fennel (Foeniculum vulgare var. vulgare),” vol. 72, no. 12, pp. 1008–1021, 2021, doi:10.1071/CP21149.
[29] S. Saraçli and M. Akşit, “Comparison of Hierarchic Clustering Methods with Cophenetic Correlation Coefficient in Big Data,” AKU J Sci Eng, vol. 22, no. 031302, pp. 552–559, 2022, doi:10.35414/akufemubid.1018302.
[30] O. L. S. de Oliveira, C. A. F. de Melo, and M. M. Souza, “Searching for intraspecific chromosomic variation in Passiflora L. species,” Biologia (Bratisl.), vol. 76, no. 9, pp. 2467–2476, 2021, doi:10.1007/s11756-021-00773-2.
[31] Y. H. Zhong et al., “Variation of Chromosome Composition in a Full-Sib Population Derived From 2x × 3x Interploidy Cross of Populus,” Front. Plant Sci., vol. 12, p. 816946, Jan. 2022, doi:10.3389/FPLS.2021.816946/BIBTEX.
[32] M. Podwyszyńska, K. Mynett, M. Markiewicz, S. Pluta, and A. Marasek-Ciołakowska, “Chromosome Doubling in Genetically Diverse Bilberry (Vaccinium myrtillus L.) Accessions and Evaluation of Tetraploids in Terms of Phenotype and Ability to Cross with Highbush Blueberry (V. corymbosum L.),” Agronomy, 2021.
[33] C. Osuna-Mascaró, A. C. Agneray, L. M. Galland, E. A. Leger, and T. L. Parchman, “Fine-scale spatial genetic structure in a locally abundant native bunchgrass (Achnatherum thurberianum) including distinct lineages revealed within seed transfer zones,” Evol. Appl., vol. 16, no. 5, pp. 979–996, 2023, doi.org/10.1111/eva.13547.
[34] D. Gamba and N. Muchhala, “Global patterns of population genetic differentiation in seed plants,” Mol. Ecol., vol. 29, no. 18, pp. 3413–3428, Sep. 2020, doi:10.1111/MEC.15575.
[35] M. Martos-Fuentes, C. Egea-Gilabert, I. Mezaka, J. A. Fernández, M. Egea-Cortines, and J. Weiss, “Distance analysis among northern and southern European legume accessions using next-generation sequencing reveal discrepancies between geographic and genetic origins,” Sci. Hortic., vol. 243, pp. 498–505, 2019, doi:10.1016/J.Scienta.2018.09.007.
[36] V. Allan, S. Geetha, M. Vetriventhan, and V. C. R. Azevedo, “Genetic diversity analysis of geographically diverse landraces and wild accessions in sorghum,” Electron. J. Plant Breed., vol. 11, no. 03, pp. 760–764, Sep. 2020, doi:10.37992/2020.1103.125.
[37] Y. D. Jo et al., “Mitotypes Based on Structural Variation of Mitochondrial Genomes Imply Relationships With Morphological Phenotypes and Cytoplasmic Male Sterility in Peppers,” Front. Plant Sci., vol. 10, 2019, doi:10.3389/FPLS.2019.01343.
[38] V. Cambiaso, G. R. Rodríguez, and D. M. Francis, “Propagation Fidelity and Kinship of Tomato Varieties ‘UC 82’ and ‘M82’ Revealed by Analysis of Sequence Variation,” Agron. 2020 Vol 10 Page 538, vol. 10, no. 4, p. 538, 2020, doi:10.3390/AGRONOMY10040538.
[39] Z. Poudineh, B. A. Fakheri, A. R. Sirosmehr, and S. Shojaei, “Genetic and morphological diversity of fennel by using ISSR marker and biplot analysis,” Indian J. Plant Physiol., vol. 23, no. 3, pp. 564–572, 2018, doi:10.1007/s40502-018-0390-8.