Comparison of Two PCR Primer Sets for In-House Validation of GHSR Gene Variation Detection Employing Artificial Recombinant Plasmid Approach

Main Article Content

Ahsanal Kasasiah
Jekmal Malau
Sekar Andjung Tresnawati
Priscinya Christiana Debora
Nur Komala Fitri
Saarah Hamidah Asmara Indratno
Asman Hitopik
Eriyanti Astika
Anisa Aula Rahma
Al Mukhlas Fikri

Abstract

Stunting is a significant global public health problem caused by long-term dietary deficits that affect many children worldwide. Both environmental and genetic factors, including variants in the GHSR gene, play a crucial role in stunted growth. This study used an artificial recombinant plasmid DNA method to evaluate two primer set combinations for identifying DNA variants in the GHSR gene. Selecting suitable primer sets for identifying GHSR genetic variants linked to stunting is essential, as evidenced by PCR and sequencing techniques. The target gene, based on the GHSR reference sequence, consists of eight DNA variations (ΔQ36, G57G, P108L, L118L, R159R, C173R, D246A, and A277P). A recombinant plasmid was created by inserting a 1000 bp fragment of the GHSR gene into the pUC57 backbone. Primer sets were chosen based on their capacity to amplify these eight genetic variations and were optimized and validated using PCR methods. PCR and bi-directional sequencing verified the existence of surrounding DNA and specific single nucleotide variants (SNVs). In our study, we discovered four changes in the DNA sequence (R159R G>A, C173R T>C, D246A A>C, and A277P G>C) using the E1_F2/E1_R3 primer pair. Additionally, a new combination of primers (E1_F1/E1_R3) effectively detected seven DNA sequence mutations (ΔQ36 del CAG, G57G C>T, P108L C>T, L118L C>T, R159R G>A, C173R T>C, and D246A A>C). We have developed a new combination of forward and reverse primers to identify seven SNVs in the GHSR gene, which could serve as a diagnostic tool in clinical laboratory settings.

Downloads

Download data is not yet available.

Article Details

How to Cite
Comparison of Two PCR Primer Sets for In-House Validation of GHSR Gene Variation Detection Employing Artificial Recombinant Plasmid Approach. (2024). Jurnal Biota, 10(2), 128-143. https://doi.org/10.19109/biota.v10i2.21166
Section
Artikel

How to Cite

Comparison of Two PCR Primer Sets for In-House Validation of GHSR Gene Variation Detection Employing Artificial Recombinant Plasmid Approach. (2024). Jurnal Biota, 10(2), 128-143. https://doi.org/10.19109/biota.v10i2.21166

References

K. F. Michaelsen, L. M. Neufeld, and A. M. Prentice, Global landscape of nutrition challenges in infants and children. Karger Medical and Scientific Publishers, 2020, doi: 10.1159/000503315.

Kementerian Kesehatan RI, “BUKU SAKU hasil survei status gizi indonesia (SSGI),” 2022. [Online]. Available: https://kesmas.kemkes.go.id/assets/uploads/contents/attachments/09fb5b8ccfdf088080f2521ff0b4374f.pdf

P. Vonaesch et al., “Factors associated with stunting in healthy children aged 5 years and less living in Bangui (RCA),” PLoS One, vol. 12, no. 8, p. e0182363, 2017, doi: 10.1371/journal.pone.0182363.

R. R. El Kishawi, K. L. Soo, Y. A. Abed, and W. A. M. W. Muda, “Prevalence and associated factors influencing stunting in children aged 2-5 years in the Gaza Strip-Palestine: A cross-sectional study,” BMC Pediatr, vol. 17, no. 1, p. 210, 2017, doi: 10.1186/s12887-017-0957-y.

S. Fatima, I. Manzoor, A. M. Joya, S. Arif, and S. Qayyum, “Stunting and associated factors in children of less than five years: A hospital-based study,” Pak J Med Sci, vol. 36, no. 3, 2020, doi: 10.12669/pjms.36.3.1370.

W. R. W. Taib and I. Ismail, “Evidence of stunting genes in Asian countries: A review,” Meta Gene, vol. 30, p. 100970, 2021, doi: 10.1016/j.mgene.2021.100970.

A. D. Laksono, N. E. W. Sukoco, T. Rachmawati, and R. D. Wulandari, “Factors related to stunting incidence in toddlers with working mothers in Indonesia,” Int J Environ Res Public Health, vol. 19, no. 17, p. 10654, 2022, doi: 10.3390/ijerph191710654.

J. D. Y. Orellana et al., “Intergenerational association of short maternal stature with stunting in Yanomami indigenous children from the Brazilian Amazon,” Int J Environ Res Public Health, vol. 18, no. 17, p. 9130, 2021, doi: 10.3390/ijerph18179130.

H. Inoue et al., “Identification and functional analysis of novel human growth hormone secretagogue receptor (GHSR) gene mutations in Japanese subjects with short stature,” J Clin Endocrinol Metab, vol. 96, no. 2, pp. E373–E378, 2011, doi: 10.1210/jc.2010-1570.

C. Katsukawa, T. Kenri, K. Shibayama, and K. Takahashi, “Genetic characterization of Mycoplasma pneumoniae isolated in Osaka between 2011 and 2017: Decreased detection rate of macrolide-resistance and increase of p1 gene type 2 lineage strains,” PLoS One, vol. 14, no. 1, p. e0209938, 2019, doi: 10.1371/journal.pone.0209938.

P. Bohanes et al., “Pharmacogenetic analysis of INT 0144 trial: Association of polymorphisms with survival and toxicity in rectal cancer patients treated with 5-FU and radiation,” Clinical Cancer Research, vol. 21, no. 7, pp. 1583–1590, 2015, doi: 10.1158/1078-0432.ccr-14-0857.

K. S. Ku, R. K. Chodavarapu, R. Martin, M. D. Miller, H. Mo, and E. S. Svarovskaia, “Sequencing analysis of NS3/4A, NS5A, and NS5B genes from patients infected with hepatitis c virus genotypes 5 and 6,” J Clin Microbiol, vol. 54, no. 7, pp. 1835–1841, 2016, doi: 10.1128/jcm.00238-16.

U. Nuraeni et al., “Droplet digital PCR versus real-time PCR for in-house validation of porcine detection and quantification protocol: An artificial recombinant plasmid approach,” PLoS One, vol. 18, no. 7, pp. e0287712–e0287712, 2023, doi: 10.1371/journal.pone.0287712.

P. E. P. Ariati, I. G. P. Wirawan, and M. M. V Sasadara, “Optimization of primer and polymerase chain reaction conditions to amplify COI locus for identification of purnajiwa (euchresta horsfieldii (lesch.) benn.) collected from bedugul, bali,” IOP Conf Ser Earth Environ Sci, vol. 913, no. 1, p. 12069, 2021, doi: 10.1088/1755-1315/913/1/012069.

D. Aisya, M. E. Poerwanto, D. Wicaksono, and J. D. Ortuoste, “Optimization of the detection method for xanthomonas axonopodis on chili pepper seeds using polymerase chain reaction with two difference primers,” BIO Web Conf, vol. 69, p. 1033, 2023, doi: 10.1051/bioconf/20236901033.

M. Park, J. Won, B. Y. Choi, and C. J. Lee, “Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR,” Exp Mol Med, vol. 52, no. 6, pp. 963–977, 2020, doi: 10.1038/s12276-020-0452-7.

Y. Goulev, A. Matifas, V. Heyer, B. Reina-San-Martin, and G. Charvin, “COSPLAY: An expandable toolbox for combinatorial and swift generation of expression plasmids in yeast,” PLoS One, vol. 14, no. 8, p. e0220694, 2019, doi: 10.1371/journal.pone.0220694.

M. I. Fahri, R. M. Alatiffa, S. I. Yanti, I. Prakoso, and A. N. Mashitah, “In silico recombinant plasmid design of pHA171 with phdABCD insertion for ethidium bromide degradation,” Acta Biochimica Indonesiana, vol. 4, no. 1, p. 7, 2021, doi: 10.32889/actabioina.7.

M. McPherson and S. Møller, PCR, 2nd ed. Taylor & Francis, 2006.

J. Obradovic et al., “Optimization of PCR conditions for amplification of GC-RichEGFRPromoter sequence,” J Clin Lab Anal, vol. 27, no. 6, pp. 487–493, 2013, doi: 10.1002/jcla.21632.

R. Setyawati and S. Zubaidah, “Optimasi konsentrasi primer dan suhu annealing dalam mendeteksi gen leptin pada sapi peranakan ongole (PO) menggunakan polymerase chain reaction (PCR),” Indonesian Journal of Laboratory, vol. 4, no. 1, p. 36, 2021, doi: 10.22146/ijl.v4i1.65550.

Y. M. D. Lo and K. C. A. Chan, “Introduction to the polymerase chain reaction,” Methods Mol Biol, vol. 336, pp. 1–10, 2006, doi: 10.1385/1-59745-074-X:1.

T. C. Lorenz, “Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies,” Journal of Visualized Experiments, vol. 63, no. 63, 2012, doi: 10.3791/3998.

M. Masnaini, A. Achyar, M. Chatri, D. H. Putri, Y. Ahda, and Irdawati, “Primer design and optimization of pcr methods for detecting mixed rat meat in food samples,” Adv Biol Sci Res, pp. 282–289, 2023, doi: 10.2991/978-94-6463-166-1_37.

U. K. Hanapi, M. N. M. Desa, A. Ismail, and S. Mustafa, “A higher sensitivity and efficiency of common primer multiplex PCR assay in identification of meat origin using NADH dehydrogenase subunit 4 gene,” J Food Sci Technol, vol. 52, no. 7, pp. 4166–4175, 2014, doi: 10.1007/s13197-014-1459-7.

D. Silalahi, I. G. P. Wirawan, and M. M. V Sasadara, “Optimization of annealing temperature for amplification of ehoscnola locus in pranajiwa (euchresta horsfieldii) plant collected from mountains, urban and coastal areas in Bali,” IOP Conf Ser Earth Environ Sci, vol. 913, no. 1, p. 012059, 2021, doi: 10.1088/1755-1315/913/1/012059.

K. S. Allemailem et al., “Single nucleotide polymorphisms (SNPs) in prostate cancer: Its implications in diagnostics and therapeutics,” Am J Transl Res, vol. 13, no. 4, pp. 3868–3889, 2021, [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129253/.