Induction of in Vitro Germination of Tandui (Mangifera rufocostata Kostrem.): Effect of Antioxidants and 2,4-dichlorophenoxyacetic Acid

Main Article Content

Adistina Fitriani
Yudi Firmanul Arifin
Gusti Muhammad Hatta
Raihani Wahdah

Abstract

The bark of tandui (Mangifera rufocostata Kostrem.) is commonly used as a medicine for diabetes. Regeneration of this plant is difficult, and continuous harvesting of the bark leads to a decrease in the plant population. The purpose of this research is to apply tissue culture techniques for the propagation of tandui. Different antioxidants (KNO3, polyvinylpyrrolidone (PVP), Murashige and Skoog (MS) media + PVP, and MS + ascorbic acid) and varying concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (0.8, 1.0, 1.2, and 1.4 mg L–1) were tested for embryogenic tandui. The application of KNO3 and PVP suppressed the formation of browning in the media and explant of tandui. Soaking the explants in KNO3 and PVP reduce browning to 35% and 20%, respectively. The results also showed that increasing the concentration of 2,4-D enhanced the percentage of embryogenic tandui. Supplementing the media with 1.4 mg L–1 2,4-D resulted in 90% of embryogenic tandui. This study demonstrates that pre-soaking explants in antioxidants significantly reduces media browning, and supplementation of MS media with 2,4-D enhance embryogenic process. Thus, micropropagation of tandui could be achieved on a commercial basis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Induction of in Vitro Germination of Tandui (Mangifera rufocostata Kostrem.): Effect of Antioxidants and 2,4-dichlorophenoxyacetic Acid. (2025). Jurnal Biota, 11(1), 90-101. https://doi.org/10.19109/biota.v11i1.22190
Section
Artikel

How to Cite

Induction of in Vitro Germination of Tandui (Mangifera rufocostata Kostrem.): Effect of Antioxidants and 2,4-dichlorophenoxyacetic Acid. (2025). Jurnal Biota, 11(1), 90-101. https://doi.org/10.19109/biota.v11i1.22190

References

D. N. Kuhn et al., “Estimation of genetic diversity and relatedness in a mango germplasm collection using SNP markers and a simplified visual analysis method,” Sci. Hortic., vol. 252, pp. 156–168, Jun. 2019, doi: 10.1016/j.scienta.2019.03.037.

M. Khalid et al., “Anti-Diabetic Activity of Bioactive Compound Extracted from Spondias mangifera Fruit: In-Vitro and Molecular Docking Approaches,” Plants Basel Switz., vol. 11, no. 4, p. 562, Feb. 2022, doi: 10.3390/plants11040562.

R. Vasudeva et al., “Use Values and Cultural Importance of Major Tropical Fruit Trees: An Analysis from 24 Village Sites Across South and South-East Asia,” Indian J. Plant Genet. Resour., vol. 28, no. 1, p. 17, 2015, doi: 10.5958/0976-1926.2015.00003.0.

V. M. Kulkarni and V. K. Rathod, “Exploring the potential of Mangifera indica leaves extract versus mangiferin for therapeutic application,” Agric. Nat. Resour., vol. 52, no. 2, pp. 155–161, Apr. 2018, doi: 10.1016/j.anres.2018.07.001.

S. Rajan and U. Hudedamani, “Genetic Resources of Mango: Status, Threats, and Future Prospects,” Conserv. Util. Hortic. Genet. Resour., pp. 217–249, 2019, doi: 10.1007/978-981-13-3669-0_7.

M. Hoffmann et al., “Conservation planning and the IUCN Red List,” Endanger. Species Res., vol. 6, pp. 113–125, 2008, doi: 10.3354/esr006113.

F. Tulzuhrah, A. Rafi’i, and R. Eryati, “Kandungan Logam Berat Pada Badan Air Dan Sedimen Di Sungai Belayan Kabupaten Kutai Kartanegara,” Trop. Aquat. Sci., vol. 1, no. 1, pp. 31–38, Feb. 2023, doi: 10.30872/tas.v1i1.470.

E. A. Honda, N. A. L. Pilon, and G. Durigan, “The relationship between plant density and survival to water stress in seedlings of a legume tree,” Acta Bot. Bras., vol. 33, no. 3, pp. 602–606, Sep. 2019, doi: 10.1590/0102-33062018abb0432.

B. W. Dunn, T. S. Dunn, J. H. Mitchell, and J. Brinkhoff, “Effects of plant population and row spacing on grain yield of aerial-sown and drill-sown rice,” Crop Pasture Sci., vol. 71, no. 3, p. 219, 2020, doi: 10.1071/cp19421.

K. K. Das, “Significance of Wild Species in Crop Improvement of Tropical Fruits – A Review,” Int. J. Pure Appl. Biosci., vol. 6, no. 2, pp. 1506–1510, May 2018, doi: 10.18782/2320-7051.5482.

M. Hesami, A. Baiton, M. Alizadeh, M. Pepe, D. Torkamaneh, and A. M. P. Jones, “Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis,” Int. J. Mol. Sci., vol. 22, no. 11, p. 5671, May 2021, doi: 10.3390/ijms22115671.

M. Ayuso, P. García-Pérez, P. Ramil-Rego, P. P. Gallego, and M. E. Barreal, “In vitro culture of the endangered plant Eryngium viviparum as dual strategy for its ex situ conservation and source of bioactive compounds,” Plant Cell Tissue Organ Cult. PCTOC, vol. 138, no. 3, pp. 427–435, Jun. 2019, doi: 10.1007/s11240-019-01638-y.

H. Mehbub et al., “Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application,” Plants Basel Switz., vol. 11, no. 23, p. 3208, Nov. 2022, doi: 10.3390/plants11233208.

K. Arora, M. K. Rai, and A. K. Sharma, “Tissue culture mediated biotechnological interventions in medicinal trees: recent progress,” Plant Cell Tissue Organ Cult. PCTOC, vol. 150, no. 2, pp. 267–287, Apr. 2022, doi: 10.1007/s11240-022-02298-1.

C. A. Espinosa-Leal, C. A. Puente-Garza, and S. García-Lara, “In vitro plant tissue culture: means for production of biological active compounds,” Planta, vol. 248, no. 1, pp. 1–18, Jul. 2018, doi: 10.1007/s00425-018-2910-1.

C. R. Singh, “Review on Problems and its Remedy in Plant Tissue Culture,” Asian J. Biol. Sci., vol. 11, no. 4, pp. 165–172, Sep. 2018, doi: 10.3923/ajbs.2018.165.172.

M. Hesami, M. Tohidfar, M. Alizadeh, and M. H. Daneshvar, “Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant,” J. For. Res., vol. 31, no. 3, pp. 789–796, Nov. 2018, doi: 10.1007/s11676-018-0860-x.

A. Acemi et al., “Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants,” Vitro Cell. Dev. Biol. - Plant, vol. 54, no. 5, pp. 537–544, Jul. 2018, doi: 10.1007/s11627-018-9915-0.

D. Kulus, “Influence of growth regulators on the development, quality, and physiological state of in vitro-propagated Lamprocapnos spectabilis (L.) Fukuhara,” Vitro Cell. Dev. Biol. - Plant, vol. 56, no. 4, pp. 447–457, Mar. 2020, doi: 10.1007/s11627-020-10064-1.

I. Apriani, Sonia Adiba, Dawani, T. Nurseha, A. Fatiqin, and Yessy Velina, “Plant Growth Regulators (PGRs) Study for Root and Bud Induction on Stem Cuttings of Stevia rebaudiana,” J. Biota, vol. 10, no. 2, pp. 116–121, May 2024, doi: 10.19109/biota.v10i2.22022.

T. Hazubska-Przybył, “Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review,” Forests, vol. 10, no. 11, p. 1028, Nov. 2019, doi: 10.3390/f10111028.

B. M. Twaij, Z. Jazar, and Md. N. Hasan, “Trends in the Use of Tissue Culture, Applications and Future Aspects,” Int. J. Plant Biol., vol. 11, no. 1, p. 8385, Aug. 2020, doi: 10.4081/pb.2020.8385.

I. da C. Souza et al., “Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system,” Mar. Pollut. Bull., vol. 94, no. 1–2, pp. 176–184, May 2015, doi: 10.1016/j.marpolbul.2015.02.032.

S. Sajana, P. Thomas, P. Nandeesha, R. M. Kurian, and H. Bindu, “Somatic embryogenesis mediated micropropagation of polyembryonic cultivars of mango Vellaikolumban and Olour using nucellus tissue,” Isr. J. Plant Sci., vol. 69, no. 3–4, pp. 119–128, Jan. 2022, doi: 10.1163/22238980-bja10053.

F. Conde, E. Carmona-Martin, J. I. Hormaza, and C. Petri, “In vitro establishment and micropropagation of mango (Mangifera indica L.) from cotyledonary nodes,” Vitro Cell. Dev. Biol. - Plant, Feb. 2023, doi: 10.1007/s11627-023-10334-8.

G. Amente and E. Chimdessa, “Control of browning in plant tissue culture: A review,” J. Sci. Agric., pp. 67–71, Dec. 2021, doi: 10.25081/jsa.2021.v5.7266.

B. Meenashree, G. Kathiravan, K. Srinivasan, and B. Rajangam, “Effect of Plant Hormones and Media Composition on Browning and Growth of Bacopa monnieri Callus Cultures,” Res. J. Pharm. Technol., vol. 10, no. 2, p. 497, 2017, doi: 10.5958/0974-360x.2017.00099.3.

M. Shirazi, S. A. Rahpeyma, and J. Zolala, “A new approach to prevent hazelnut callus browning by modification of sub-culture,” Biol. Plant., vol. 64, pp. 417–421, May 2020, doi: 10.32615/bp.2020.009.

S. Manish et al., “Nucellar embryogenesis and plantlet regeneration in monoembryonic and polyembryonic mango (Mangifera indica L.) cultivars,” Afr. J. Biotechnol., vol. 15, no. 52, pp. 2814–2823, Dec. 2016, doi: 10.5897/ajb2016.15713.

C. Petri, R. E. Litz, S. K. Singh, and J. I. Hormaza, “In Vitro Culture and Genetic Transformation in Mango,” Compend. Plant Genomes, pp. 131–151, 2021, doi: 10.1007/978-3-030-47829-2_8.

L. A. Herrera-Cazares, I. Luzardo-Ocampo, A. K. Ramírez-Jiménez, J. A. . Gutiérrez-Uribe, R. Campos-Vega, and M. Gaytán-Martínez, “Influence of extrusion process on the release of phenolic compounds from mango (Mangifera indica L.) bagasse-added confections and evaluation of their bioaccessibility, intestinal permeability, and antioxidant capacity,” Food Res. Int., vol. 148, p. 110591, Oct. 2021, doi: 10.1016/j.foodres.2021.110591.

X. Cai, H. Wei, C. Liu, X. Ren, L. T. Thi, and B. R. Jeong, “Synergistic Effect of NaCl Pretreatment and PVP on Browning Suppression and Callus Induction from Petal Explants of Paeonia Lactiflora Pall. ‘Festival Maxima,’” Plants Basel Switz., vol. 9, no. 3, p. 346, Mar. 2020, doi: 10.3390/plants9030346.

S. E. Quintana, S. Salas, and L. A. García‐Zapateiro, “Bioactive compounds of mango (Mangifera indica): a review of extraction technologies and chemical constituents,” J. Sci. Food Agric., vol. 101, no. 15, pp. 6186–6192, Aug. 2021, doi: 10.1002/jsfa.11455.

A. Pandey and S. Tripathi, “Concept of standardization, extraction and pre phytochemical screeningtrategies for herbal drug,” J Pharmacogn Phytochem, vol. 2, pp. 115–119, 2014.

M. Irshad et al., “In vitro regeneration of Abelmoschus esculentus L. cv. Wufu: Influence of anti-browning additives on phenolic secretion and callus formation frequency in explants,” Hortic. Environ. Biotechnol., vol. 58, no. 5, pp. 503–513, Oct. 2017, doi: 10.1007/s13580-017-0301-3.

H. Amrulloh, A. Fatiqin, W. Simanjuntak, H. Afriyani, and A. Annissa, “Antioxidant and Antibacterial Activities of Magnesium Oxide Nanoparticles Prepared using Aqueous Extract of Moringa Oleifera Bark as Green Agents,” J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 1, pp. 44–53, Jan. 2021, doi: 10.47352/jmans.v1i1.9.

M. I. Aldaej, S. M. Alturki, W. F. Shehata, and H. S. Ghazzawy, “Effect of Potassium Nitrate on Antioxidants Production of Date Palm (Phoenix dactylifera L.) in vitro,” Pak. J. Biol. Sci., vol. 17, no. 12, pp. 1209–1218, Nov. 2014, doi: 10.3923/pjbs.2014.1209.1218.

L. Rubinovich, B. Segev, R. Habashi, P. Con, and R. Amir, “Establishment of Punica granatum L. peel cell culture to produce bioactive compounds,” Plant Cell Tissue Organ Cult. PCTOC, vol. 138, no. 1, pp. 131–140, Apr. 2019, doi: 10.1007/s11240-019-01609-3.

L. Abahmane, “Cultivar-Dependent Direct Organogenesis of Date Palm from Shoot Tip Explants,” Methods Mol. Biol., pp. 3–15, 2017, doi: 10.1007/978-1-4939-7156-5_1.

M. Boronat and A. Corma, “What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?,” ACS Catal., vol. 9, no. 2, pp. 1539–1548, Feb. 2019, doi: 10.1021/acscatal.8b04317.

Z. Zulkarnain, R. M. N. Hartanto, S. N. Rahmatullah, and O. J. Djamaludin, “Development and Empowerment of Peatland Ecosystem (Analysis of the Peat Ecosystem Recovery and Development Program in the Districts of Kutai Kartanegara and East Kutai, East Kalimantan Province),” Int. J. Multicult. Multireligious Underst., vol. 7, no. 6, p. 1, Jul. 2020, doi: 10.18415/ijmmu.v7i6.1658.

B. R. Kuluev, “Darkening of Plant Tissues during in vitro Cultivation and Methods for its Prevention,” Biotekhnologiya, vol. 36, no. 2, pp. 26–42, 2020, doi: 10.21519/0234-2758-2020-36-2-26-42.

N. Permadi et al., “Traditional and next-generation methods for browning control in plant tissue culture: Current insights and future directions,” Curr. Plant Biol., vol. 38, p. 100339, Jun. 2024, doi: 10.1016/j.cpb.2024.100339.

Y. Zhou, Z. Xu, and Z. Liu, “Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives,” J. Transl. Med., vol. 21, no. 1, p. 902, Dec. 2023, doi: 10.1186/s12967-023-04782-4.

J. K. Shekhawat, M. K. Rai, N. S. Shekhawat, and V. Kataria, “Synergism of m-topolin with auxin and cytokinin enhanced micropropagation of Maytenus emarginata,” Vitro Cell. Dev. Biol. - Plant, vol. 57, no. 3, pp. 418–426, Nov. 2020, doi: 10.1007/s11627-020-10132-6.

S. A. M. Hassan and N. S. Zayed, “Factor Controlling Micropropagation of Fruit Trees: A Review,” Sci. Int., vol. 6, no. 1, pp. 1–10, Jan. 2018, doi: 10.17311/sciintl.2018.1.10.

C. Hu, H. Zhao, J. Shi, J. Li, X. Nie, and G. Yang, “Effects of 2,4-Dichlorophenoxyacetic Acid on Cucumber Fruit Development and Metabolism,” Int. J. Mol. Sci., vol. 20, no. 5, p. 1126, Mar. 2019, doi: 10.3390/ijms20051126.

G. Jamra, P. Shah, A. Agarwal, D. Sharma, and A. Kumar, “Endogenous phytonutrient, phytochemical, and phytohormone levels modulate in-vitro callus induction and plant regeneration in finger millet (Eleusine coracana) genotypes,” Plant Biosyst. - Int. J. Deal. Asp. Plant Biol., vol. 156, no. 3, pp. 700–709, May 2021, doi: 10.1080/11263504.2021.1918779.

T. Handayani, Y. S. Aziz, and D. Herlinasari, “Pembuatan Dan Uji Mutu Tepung Umbi Porang (Amorphophallus oncophyllus Prain) Di Kecamatan Ngrayun,” MEDFARM J. Farm. Dan Kesehat., vol. 9, no. 1, pp. 13–21, Sep. 2020, doi: 10.48191/medfarm.v9i1.27.

R. S. Reis, E. M. Vale, K. R. Sousa, C. Santa-Catarina, and V. Silveira, “Pretreatment free of 2,4-dichlorophenoxyacetic acid improves the differentiation of sugarcane somatic embryos by affecting the hormonal balance and the accumulation of reserves,” Plant Cell Tissue Organ Cult. PCTOC, vol. 145, no. 1, pp. 101–115, Jan. 2021, doi: 10.1007/s11240-020-01995-z.

Z. Ergun, “The effects of plant growth substances on the oil content and fatty acid composition of Ricinus communis L.: an in vitro study,” Mol. Biol. Rep., vol. 49, no. 6, pp. 5241–5249, Sep. 2021, doi: 10.1007/s11033-021-06686-2.

M. Taghizadeh and M. G. Dastjerdi, “Inhibition of browning problem during the callogenesis of Spartium junceum L.,” Ornam. Hortic., vol. 27, no. 1, pp. 68–77, Mar. 2021, doi: 10.1590/2447-536x.v27i1.2230.