Flavonoids and Antioxidant Activities of Silver Nanoparticles of Extract Galaxaura rugosa

Main Article Content

Evika Savitri
Mohamad Fajar Bahari
Eko Budi Minarno
Shinta

Abstract

Algae Galaxaura rugosa contains phenolic compounds, flavonoids, β-carotene, and galactane sulfate, which are natural antioxidants. The development of antioxidants of red algae into silver nanoparticles (AgNPs) can improve their effectiveness in preventing ROS. The objective of this study is to synthesize silver nanoparticles using G. rugosa algae as well as to test the total flavonoid levels and antioxidant activity of G. rugosa silver nanoparticles. The method of research for synthesis silvernanoparticles using extract G. rugosa as a bioreductor. Characterization of silver nanoparticle G. rugosa using Particle Size Analysis (PSA) and UV-Vis Spectrophotometer. The total flavonoid and antioxidant activities of silver nanoparticles using UV- VIS spectrophotometer. The test of antioxidant activity using the DPPH method. The research results showed that silver nanoparticles using G. rugosa resulted in a color change of the soluble from green to yellow.  The UV- VIS spectrophotometer measurement in the 570-580 nm wave range with a maximum wavelength of 406 nm. The measurement of the size distribution of the nanoparticles formed using PSA is an average of 11 nm. Total flavonoid silver nanoparticles of G. rugosa value of 36.21±0.65 mgQE/g higher than extract value of 32,12±0,79 mgQE/g. The antioxidant activity of IC50 of silver nanoparticle G. rugosa value of 26.658 ±1.44 ppm is very strong and the extract value of 46,128 ± 1.6 is strong category.

Downloads

Download data is not yet available.

Article Details

How to Cite
Flavonoids and Antioxidant Activities of Silver Nanoparticles of Extract Galaxaura rugosa. (2024). Jurnal Biota, 11(1), 1-13. https://doi.org/10.19109/biota.v11i1.22946
Section
Artikel

How to Cite

Flavonoids and Antioxidant Activities of Silver Nanoparticles of Extract Galaxaura rugosa. (2024). Jurnal Biota, 11(1), 1-13. https://doi.org/10.19109/biota.v11i1.22946

References

N. V. Thomas and S. K. Kim, “Beneficial effects of marine algal compounds in cosmeceuticals,” Marine Drugs, vol. 11, no. 1. MDPI AG, pp. 146–164, 2013. doi: 10.3390/md11010146.

Y. Nishida, Y. Kumagai, S. Michiba, H. Yasui, and H. Kishimura, “Efficient extraction and antioxidant capacity of mycosporine-like amino acids from red alga dulse palmaria palmata in Japan,” Mar Drugs, vol. 18, no. 10, Oct. 2020, doi: 10.3390/md18100502.

A. N. Panche, A. D. Diwan, and S. R. Chandra, “Flavonoids: An overview,” Journal of Nutritional Science, vol. 5. Cambridge University Press, Jan. 08, 2016. doi: 10.1017/jns.2016.41.

M. N. Islam, M. S. H. Kabir, and Md. M. R. D. Syed Md. Abdul Kader, Mahmudul Hasan, Ebrahim Khan Samrat, Imran Bin Habib, Mohammad Nazmul Hoque Jony, Mohammed Sohel Chowdhury, Abul Hasanat, “Total Phenol, Total Flavonoid Content and Antioxidant Potential of Methanol Extract of Boehmeria platyphylla D Don Leaves,” World J Pharm Res, vol. Vol. 5 Iss, no. September, pp. 334–344, 2017, doi: 10.20959/wjpr20165-6159.

E. Ifeanyi., “A Review on Free Radicals and Antioxidants,” Int.J.Curr.Res.Med.Sci.(2018).4(2):123-133, vol. 4, no. 2, pp. 123–133, 2018, doi: 10.22192/ijcrms.2018.04.02.019.

H. Masaki, “Role of antioxidants in the skin: Anti-aging effects,” J Dermatol Sci, vol. 58, no. 2, pp. 85–90, 2010, doi: 10.1016/j.jdermsci.2010.03.003.

H. Zhang and R. Tsao, “Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects,” Current Opinion in Food Science, vol. 8. Elsevier Ltd, pp. 33–42, Apr. 01, 2016. doi: 10.1016/j.cofs.2016.02.002.

V. J. Mohanraj and Y. Chen, “Nanoparticles-A Review,” 2006. [Online]. Available: http://www.tjpr.freehosting.net

M. M. Modena, B. Rühle, T. P. Burg, and S. Wuttke, “Nanoparticle Characterization: What to Measure?,” Advanced Materials, vol. 31, no. 32. Wiley-VCH Verlag, 2019. doi: 10.1002/adma.201901556.

V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: Green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1–2. pp. 83–96, Jan. 30, 2009. doi: 10.1016/j.cis.2008.09.002.

A. A. Haleemkhan, B. Naseem, and B. V. Vardhini, “Synthesis of Nanoparticles From Plant Extracts,” International Journal of Modern Chemistry and Applied Science, vol. 2, no. 3, pp. 195–203, 2015, [Online]. Available: www.ijcasonline.com

G. Princy, G. Geoprincy, B. N. Vidhya Srri, U. Poonguzhali, N. N. Gandhi, and S. Renganathan, “A REVIEW ON GREEN SYNTHESIS OF SILVER NANOPARTICLES,” 2013. [Online]. Available: https://www.researchgate.net/publication/273625472

B. Essghaier, G. Ben Khedher, H. Hannachi, R. Dridi, M. F. Zid, and C. Chaffei, “Green synthesis of silver nanoparticles using mixed leaves aqueous extract of wild olive and pistachio: characterization, antioxidant, antimicrobial and effect on virulence factors of Candida,” Arch Microbiol, vol. 204, no. 4, Apr. 2022, doi: 10.1007/s00203-022-02810-3.

A. K. Ghimeray, U. S. Jung, H. Y. Lee, Y. H. Kim, E. K. Ryu, and M. S. Chang, “In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract,” Clin Cosmet Investig Dermatol, vol. 8, pp. 389–396, 2015, doi: 10.2147/CCID.S80906.

J. Dumay, N. Clément, M. Morançais, and J. Fleurence, “Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction,” Bioresour Technol, vol. 131, pp. 21–27, 2013, doi: 10.1016/j.biortech.2012.12.146.

A. G. Shard, L. Wright, and C. Minelli, “Robust and accurate measurements of gold nanoparticle concentrations using UV-visible spectrophotometry,” Biointerphases, vol. 13, no. 6, Dec. 2018, doi: 10.1116/1.5054780.

M. Ghaffari-Moghaddam, R. Hadi-Dabanlou, M. Khajeh, M. Rakhshanipour, and K. Shameli, “Green synthesis of silver nanoparticles using plant extracts,” Korean Journal of Chemical Engineering, vol. 31, no. 4, pp. 548–557, 2014, doi: 10.1007/s11814-014-0014-6.

K. Kavitha et al., “Plants as Green Source towards Synthesis of Nanoparticles,” International Research Journal of Biological Sciences, vol. 2, no. 6, pp. 66–76, 2013.

A. K. Mittal, Y. Chisti, and U. C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts,” Biotechnol Adv, vol. 31, no. 2, pp. 346–356, 2013, doi: 10.1016/j.biotechadv.2013.01.003.

A. Pugazhendhi, D. Prabakar, J. M. Jacob, I. Karuppusamy, and R. G. Saratale, “Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria,” Microb Pathog, vol. 114, pp. 41–45, Jan. 2018, doi: 10.1016/j.micpath.2017.11.013.

D. Chugh, V. S. Viswamalya, and B. Das, “Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process,” Journal of Genetic Engineering and Biotechnology, vol. 19, no. 1, Dec. 2021, doi: 10.1186/s43141-021-00228-w.

S. Azizi, F. Namvar, M. Mahdavi, M. Bin Ahmad, and R. Mohamad, “Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract,” Materials, vol. 6, no. 12, pp. 5942–5950, 2013, doi: 10.3390/ma6125942.

K. Thiyagarasaiyar, B. H. Goh, Y. J. Jeon, and Y. Y. Yow, “Algae metabolites in cosmeceutical: An overview of current applications and challenges,” Marine Drugs, vol. 18, no. 6. MDPI AG, Jun. 01, 2020. doi: 10.3390/md18060323.

M. M. Modena, B. Rühle, T. P. Burg, and S. Wuttke, “Nanoparticle Characterization: What to Measure?,” Advanced Materials, vol. 31, no. 32. Wiley-VCH Verlag, 2019. doi: 10.1002/adma.201901556.

B. Muchtaromah, D. Wahyudi, M. Ahmad, and R. Annisa, “Nanoparticle characterization of allium sativum, curcuma mangga and acorus calamus as a basic of nanotechnology on Jamu Subur Kandungan Madura,” Pharmacognosy Journal, vol. 12, no. 5, pp. 1152–1159, 2020, doi: 10.5530/PJ.2020.12.162.

J. P. Rao and K. E. Geckeler, “Polymer nanoparticles: Preparation techniques and size-control parameters,” Progress in Polymer Science (Oxford), vol. 36, no. 7. Elsevier Ltd, pp. 887–913, 2011. doi: 10.1016/j.progpolymsci.2011.01.001.

B. Khodashenas and H. R. Ghorbani, “Synthesis of silver nanoparticles with different shapes,” Arabian Journal of Chemistry, vol. 12, no. 8. Elsevier B.V., pp. 1823–1838, Dec. 01, 2019. doi: 10.1016/j.arabjc.2014.12.014.

N. Nino and J. R. Martinez, “Synthesis and antibacterial activity of silver nanoparticles with different sizes Synthesis and antibacterial activity of silver nanoparticles with different sizes,” J Nanopart Res (2008), vol. 10:1343–13, no. January 2015, pp. 1343–1348, 2008, doi: 10.1007/s11051-008-9428-6.

G. N. Rajivgandhi et al., “Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae,” Colloids Surf A Physicochem Eng Asp, vol. 600, Sep. 2020, doi: 10.1016/j.colsurfa.2020.124830.

C. V. Restrepo and C. C. Villa, “Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review,” Environ Nanotechnol Monit Manag, vol. 15, May 2021, doi: 10.1016/j.enmm.2021.100428.

S. K. Srikar, D. D. Giri, D. B. Pal, P. K. Mishra, and S. N. Upadhyay, “Green Synthesis of Silver Nanoparticles: A Review,” Green and Sustainable Chemistry, vol. 06, no. 01, pp. 34–56, 2016, doi: 10.4236/gsc.2016.61004.

E. S. Savitri, E. B. Minarno, and L. Azizah, “Characterization, Antioxidant, and Antibacterial Activity Silver Nanoparticle of Gelidium spinosum,” 2023, pp. 45–59. doi: 10.2991/978-94-6463-148-7_6.

A. S. Kashin, “A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering,” Russian Chemical Bulletin, vol. 60, no. 12, pp. 2602–2607, 2011, doi: 10.1007/s11172-011-0399-x.

R. Kale, “Green Synthesis of Silver Nanoparticles Using Papaya Seed and Its Characterization,” Int J Res Appl Sci Eng Technol, vol. 6, no. 2, pp. 168–174, 2018, doi: 10.22214/ijraset.2018.2026.

G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, “Characterisation of copper oxide nanoparticles for antimicrobial applications,” Int J Antimicrob Agents, vol. 33, no. 6, pp. 587–590, 2009, doi: 10.1016/j.ijantimicag.2008.12.004.

C. Chang, M. Yang, H. Wen, and J. Chern, “Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods,” Journal of Food and Drud Analysisi, vol. 10, no. 3, pp. 178–182, 2002.

P. Upadhyay, S. K. Mishra, S. Purohit, G. P. Dubey, B. Singh Chauhan, and S. Srikrishna, “Antioxidant, antimicrobial and cytotoxic potential of silver nanoparticles synthesized using flavonoid rich alcoholic leaves extract of Reinwardtia indica,” Drug Chem Toxicol, vol. 42, no. 1, pp. 65–75, Jan. 2019, doi: 10.1080/01480545.2018.1488859.

R. N. Sari, N. Nurhasni, and M. A. Yaqin, “Green Synthesis Nanoparticle ZnO Sargassum sp. Extract and The Products Charactheristic,” J Pengolah Has Perikan Indones, vol. 20, no. 2, p. 238, Aug. 2017, doi: 10.17844/jphpi.v20i2.17905.

A. A. Boligon, “Technical Evaluation of Antioxidant Activity,” Med Chem (Los Angeles), vol. 4, no. 7, pp. 517–522, 2014, doi: 10.4172/2161-0444.1000188.

F. Shahidi and Y. Zhong, “Measurement of antioxidant activity,” J Funct Foods, vol. 18, pp. 757–781, 2015, doi: 10.1016/j.jff.2015.01.047.

A. Fatiqin, R. Alfanaar, S. Rahman, F. Yahya, C. Shesanthi, A. M. Purwa, T. Suprayogi, Y. S. Kurniawan, “Catalytic Reduction of 4-Nitrophenol and Methylene Blue with Silver Nanoparticles Decorated with Drymoglossum piloselloides Extract,” J. Multidiscip. Appl. Nat. Sci., Mei 2024, doi: 10.47352/jmans.2774-3047.210.

A. O. Akintola et al., “Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract of Blighia sapida,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/805/1/012004.

A. K. Keshari, R. Srivastava, P. Singh, V. B. Yadav, and G. Nath, “Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum,” J Ayurveda Integr Med, vol. 11, no. 1, pp. 37–44, Jan. 2020, doi: 10.1016/j.jaim.2017.11.003.