Natural Antioxidants Effect on the Performance of Erythrocytes, Leucocytes, and Hb Levels of Pregnant Mice Exposed to the Plastic

Main Article Content

Endah Sri Palupi
Eko Setio Wibowo
IGA. Ayu Ratna Puspitasari
Atang

Abstract

Plastic is a widely used material with several toxic components, such as free radicals. HDPE plastic is considered safer but requires more attention due to increased usage. Exogen antioxidant is needed to neutralize free radicals. This research aimed to evaluate the effect of natural antioxidants on the performance of erythrocytes, leucocytes, and hemoglobin levels of pregnant mice exposed to plastic compounds. The study used a completely randomized design with six groups and four replicates each. Those groups were aquadest control, plastic chemical compounds (PCC) control, PCC + carrot juice, PCC + orange juice, PCC + purple sweet potato juice, and PCC + mung bean sprouts juice. The PCC was obtained from boiling HDPE plastic, while natural antioxidant juice was from pure sources. Pregnant mice were treated with 0.25 ml of each orally for 21 days, starting from the first gestational day. Blood was collected from a caudal vein. Erythrocytes and leucocytes were counted using a hemocytometer, and Hb levels were measured by the Sahli method. Blood cell morphology was assessed using Giemsa-stained blood smears. Statistical data were analyzed by one-way ANOVA using GraphPad Prism ver.10.0 software, while morphology data were analyzed descriptively. The results showed that PCC and natural antioxidants did not impact the number of erythrocytes, leucocytes, cell morphology, and Hb levels of pregnant mice. However, natural antioxidants may stabilize the erythrocyte total and Hb levels after the treatments are completed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Natural Antioxidants Effect on the Performance of Erythrocytes, Leucocytes, and Hb Levels of Pregnant Mice Exposed to the Plastic. (2024). Jurnal Biota, 11(1), 64-75. https://doi.org/10.19109/biota.v11i1.23677
Section
Artikel

How to Cite

Natural Antioxidants Effect on the Performance of Erythrocytes, Leucocytes, and Hb Levels of Pregnant Mice Exposed to the Plastic. (2024). Jurnal Biota, 11(1), 64-75. https://doi.org/10.19109/biota.v11i1.23677

References

A. Govind and K. Nishitha, “Plastic and its Side Effects on Humans – A Review Article,” Asian Pacific J. Environ. Cancer, vol. 6, no. 1, pp. 81–85, 2023.

R. Proshad, T. Kormoker, M. S. Islam, M. A. Haque, M. M. Rahman, and M. M. R. Mithu, “Toxic effects of plastic on human health and environment : A consequences of health risk assessment in Bangladesh,” Int. J. Heal., vol. 6, no. 1, pp. 1–5, Dec. 2017, doi: 10.14419/ijh.v6i1.8655.

A. Bringer et al., “High density polyethylene (HDPE) microplastics impair development and swimming activity of Pacific oyster D-larvae, Crassostrea gigas, depending on particle size,” Environ. Pollut., vol. 260, May 2020, doi: 10.1016/j.envpol.2020.113978.

S. Bhatt, C. Fan, M. Liu, and B. Wolfe-Bryant, “Effect of High-Density Polyethylene Microplastics on the Survival and Development of Eastern Oyster (Crassostrea virginica) Larvae,” Int. J. Environ. Res. Public Health, vol. 20, no. 12, Jun. 2023, doi: 10.3390/ijerph20126142.

A. Emblem, “Plastics properties for packaging materials,” in Packaging Technology, Elsevier, pp. 287–309, 2012, doi: 10.1533/9780857095701.2.287.

N. Rustagi, S. K. Pradhan, and R. Singh, “Public health impact of plastics: An overview,” Indian Journal of Occupational and Environmental Medicine, vol. 15, no. 3. pp. 100–103, Sep. 2011. doi: 10.4103/0019-5278.93198.

H. Çobanoğlu, M. Belivermiş, E. Sıkdokur, Ö. Kılıç, and A. Çayır, “Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes,” Chemosphere, vol. 272, Jun. 2021, doi: 10.1016/j.chemosphere.2021.129805.

G. Limonta et al., “Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-52292-5.

H. Manikowski and J. Jurga, “Free Radicals in Plastic Food Containers,” 2003.

N. O. Boadi et al., “Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota),” Sci. African, vol. 12, Jul. 2021, doi: 10.1016/j.sciaf.2021.e00801.

J. H. Park, M. Lee, and E. Park, “Antioxidant activity of orange flesh and peel extracted with various solvents,” Prev. Nutr. Food Sci., vol. 19, no. 4, pp. 291–298, Dec. 2014, doi: 10.3746/pnf.2014.19.4.291.

E. S. Palupi, Mulyati-Sarto, and R. Pratiwi, “Aktivitas Antioksidan Jus Ubi Jalar Kultivar Lokal sebagai Penangkal Radikal Bebas 1,1-diphenyl-2-picrylhydrazyl (DPPH),” Sains Mat., vol. 1, no. 1, pp. 13–16, 2012.

Y. R. Im, I. Kim, and J. Lee, “Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea batatas (l.) lam.): Varietal comparisons and physical distribution,” Antioxidants, vol. 10, no. 3, pp. 1–17, Mar. 2021, doi: 10.3390/antiox10030462.

I. R. Puyanda, K. R. Kuswanto, L. A. Margareta, and M. P. A. Anggraini, “Antioxidant Activity of Sprouting Mungbean (Vigna radiata) Variety VIMA-1,” J. Appl. Food Technol., vol. 9, no. 1, pp. 11–15, Jun. 2022, doi: 10.17728/jaft.9221.

M. Duarte, V. L. da Silva, A. C. Pacheco, N. B. Machado Neto, and C. C. Custódio, “Productivity and antioxidant activity of mung bean sprouts (Vigna radiata L.) mediated by some elicitors,” Ciência Rural, vol. 53, no. 2, 2023, doi: 10.1590/0103-8478cr20210797.

S. Batra, “Total Red Blood Cell (RBC) Count Using Hemocytometer/Neubauer’s Chamber (Micro Dilution & Macro Dilution Method),” 2018.

M. S. Blumenreich, “Chapter 153 The White Blood Cell and Differential Count,” in Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition, 1990.

S. K. Suvarna, C. Leyton, and J. D. Bancroft, Bancroft’s Theory and Practice of Histological Techniques. Churchill Livingstone, Elsevier Limited. All rights reserved., 2012.

L. M. Silver, “All About Mice: Mouse Genetics. Concepts and Applications,” Science (80-. )., vol. 270, no. 5242, pp. 1692–1693, 1995.

G. W. Heyne, E. H. Plisch, C. G. Melberg, E. P. Sandgren, J. A. Peter, and R. J. Lipinski, “A Simple and Reliable Method for Early Pregnancy Detection in Inbred Mice,” 2015.

E. Besseling, B. Wang, M. Lürling, and A. A. Koelmans, “Nanoplastic affects growth of S. obliquus and reproduction of D. magna,” Environ. Sci. Technol., vol. 48, no. 20, pp. 12336–12343, 2014, doi: 10.1021/es503001d.

Y. Ji, C. Wang, Y. Wang, L. Fu, M. Man, and L. Chen, “Realistic polyethylene terephthalate nanoplastics and the size- And surface coating-dependent toxicological impacts on zebrafish embryos,” Environ. Sci. Nano, vol. 7, no. 8, pp. 2313–2324, 2020, doi: 10.1039/d0en00464b.

Y. Cheng et al., “The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota,” Chemosphere, vol. 267, p. 129219, Mar. 2021, doi: 10.1016/j.chemosphere.2020.129219.

X. Lu et al., “Chronic exposure to high-density polyethylene microplastic through feeding alters the nutrient metabolism of juvenile yellow perch (Perca flavescens),” Anim. Nutr., vol. 9, pp. 143–158, Jun. 2022, doi: 10.1016/j.aninu.2022.01.007.

A. A. Adwas, A. Elsayed, A. E. Azab, and F. A. Quwaydir, “Oxidative stress and antioxidant mechanisms in human body,” J. Biotechnol., vol. 6, no. 1, pp. 43–47, 2019.

V. Rajashekaraiah et al., “Reactive Oxygen Species and Antioxidant Interactions in Erythrocytes,” in The Erythrocyte - A Unique Cell, IntechOpen, 2023. doi: 10.5772/intechopen.107544.

K. Jomova, S. Y. Alomar, S. H. Alwasel, E. Nepovimova, K. Kuca, and M. Valko, Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants, vol. 98, no. 5. Springer Berlin Heidelberg, 2024. doi: 10.1007/s00204-024-03696-4.

A. G. Veiko et al., “Flavonoids modulate liposomal membrane structure, regulate mitochondrial membrane permeability and prevent erythrocyte oxidative damage,” Biochim. Biophys. Acta - Biomembr., vol. 1862, no. 11, Nov. 2020, doi: 10.1016/j.bbamem.2020.183442.

A. Tigner, S. Ibrahim, and I. Murray, Histology, White Blood Cell. StatPearls Publishing, 2022.

C. Krutsri, “The function of white blood cells cell migration and immune synapse formation,” 2023, doi: 10.35841/2249-622X.99.177.

G. Y. Lee and S. N. Han, “The role of vitamin E in immunity,” Nutrients, vol. 10, no. 11, pp. 1–18, 2018, doi: 10.3390/nu10111614.

M. H. Ahmed, M. S. Ghatge, and M. K. Safo, “Hemoglobin: Structure, Function and Allostery,” in Subcellular Biochemistry, vol. 94, Springer, 2020, pp. 345–382. doi: 10.1007/978-3-030-41769-7_14.

L. Panawala, “What is the Function of Hemoglobin in the Human Body,” 2017.

A. G. Tirado, “Hemoglobina como predictor del recuento de hematocrito y hematíes según edad y sexo en una población de Villa El Salvador en Lima-Perú,” Horiz. Médico, vol. 23, no. 2, p. e1962, Mar. 2023, doi: 10.24265/horizmed.2023.v23n2.07.