Satellite-derived Sea Level Height Trend and Variation associated with Eastern Little Tuna (Euthynnus affinis) catch rates in the Makassar Strait
Main Article Content
Abstract
Sea level is a key oceanographic variable that exhibits both spatial and temporal variability and serves as an important indicator of global and regional ocean–climate variability, which can influence fishery productivity. Using satellite observation data, this study aimed to identify patterns and fluctuations in sea level trends and variability, and to examine their effects on the catch rates of Eastern Little Tuna (Euthynnus affinis) in the Makassar Strait over a ten-year period (2013–2022). Sea level time series were generated through averaging calculations and spatial mean mapping to characterize sea level distribution. Histogram analysis was applied to determine the frequency of catch per unit effort (CPUE) across different sea level ranges. The results showed that mean sea level in the Makassar Strait during the study period ranged from 0.48 to 0.78 m. Clear annual and seasonal sea level variability was observed, with higher values (0.65–0.70 m) during the northwest monsoon and lower values (0.50–0.60 m) during the southeast monsoon. Over the ten-year period, sea level increased by approximately 0.13 m. The highest CPUE of Eastern Little Tuna was associated with sea levels between 0.60 and 0.65 m. Histogram analysis further indicated that this sea level range corresponded to the maximum CPUE values. In contrast, higher sea levels ranging from 0.75 to 0.80 m were associated with the lowest CPUE, value of 30 kg/trip.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
How to Cite
References
S. Koeshendrajana, I. W. Rusastra, and P. Martosubroto, Potensi Sumber Daya Kelautan dan Perikanan. 2019.
A. L. Ahmad, M. L. Syamsuddin, N. P. Purba, and Sunarto, “Thermal front condition through El Niño and Indonesian throughflow phase in southern sea of East Java and Bali on the east monsoon,” IOP Conf. Ser.: Earth Environ. Sci., vol. 303, p. 8, 2019. doi: 10.1088/1755-1315/303/1/012002.
S. Wijffels and G. Meyers, “An intersection of oceanic waveguide: Variability in the Indonesian Throughflow Region,” J. Phys. Oceanogr., vol. 34, pp. 1232–1253, 2003. doi: 10.1175/1520-0485(2004)034%3C1232:AIOOWV%3E2.0.CO;2.
MMF, Fish Statistics, Ministry of Marine Affairs and Fisheries, 2022.
B. Yunus, Suwarni, and B. S. Parawansa, “Population dynamics of tuna (Euthynnus affinis, Cantor 1849) in western waters of South Sulawesi,” Int. J. Res., vol. 8, pp. 164–172, 2020. doi:10.29121/granthaalayah.v8.i8.2020.1001.
F. Nuzula, M. L. Syamsuddin, L. P. Yuliadi, and N. P. Purba, “Eddies spatial variability at Makassar Strait Flores,” IOP Conf. Ser.: Earth Environ. Sci., vol. 54, p. 012079, 2017. doi: 10.1088/1755-1315/54/1/012079.
G. Harsono, A. S. Atmadipoera, F. Syamsudin, D. Manurung, S. B. Mulyono, and H. Eddy, “Features observed from multisensor satellite oceanography,” Asian J. Sci. Res., vol. 7, pp. 571–580, 2014.
S. J. Williams, “Sea-level rise implications for coastal region,” J. Coastal Res., vol. 63, no. 63, pp. 184–196, 2013.
IPCC, Sixth Assessment Report – The Physical Science Basis, Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 2021, pp. 1211–1362, doi: 10.1017/9781009157896.011.
B. Nababan, S. Hadianti, and N. M. N. Natih, “Dinamika anomali paras laut perairan Indonesia,” J. Ilmu Teknol. Kelaut. Trop., vol. 7, no. 1, pp. 259–272, 2015.
S. Marpaung and T. Prayogo, “Analisis arus geostropik permukaan laut berdasarkan data satelit altimetri,” in Seminar Nasional Pengindraan Jauh, pp. 561–567, 2014. doi: 10.3923/ajsr.2014.571.580.
M. F. Azis, “Gerak air di laut,” Oseana, vol. 31, no. 3, pp. 9–21, 2006.
I. Sofian and I. Nahib, “Proyeksi kenaikan tinggi muka laut dengan menggunakan data altimeter dan model IPCC–AR4,” Globe, vol. 12, no. 2, pp. 173–181, 2010.
J. J. Polovina and E. A. Howell, “Ecosystem indicators derived from satellite remotely sensed oceanographic data for the North Pacific,” ICES J. Mar. Sci., vol. 62, no. 3, pp. 319–327, 2005. doi: 10.1016/J.ICESJMS.2004.07.031.
A. Tussadiah, W. S. Pranowo, M. L. Syamsuddin, I. Riyantini, B. Nugraha, and D. Novianto, “Characteristics of eddies kinetic energy associated with yellowfin tuna in southern Java Indian Ocean,” IOP Conf. Ser.: Earth Environ. Sci., vol. 176, p. 10, 2018. doi:10.1088/1755-1315/176/1/012004.
R. D. Susanto, A. L. Gordon, and T. Zheng, “Upwelling along the coasts of Java and Sumatra and its relation to ENSO,” Geophys. Res. Lett., vol. 28, no. 8, pp. 1599–1602, 2001. doi: 10.1029/2000GL011844.
Y. N. Kamaruzzaman and M. A. Mustapha, “An overview assessment of the effectiveness of satellite images and remote sensing in predicting potential fishing grounds and its applicability for Rastrelliger kanagurta in the Malaysian EEZ off the South China Sea,” Rev. Fish. Sci. Aquacult., pp. 1–22, 2023. doi: 10.1080/23308249.2023.2183341.
J. Lumban-Gaol, R. R. Leben, S. Vignudelli, K. Mahapatra, Y. Okada, B. Nababan, and M. Mei-Ling, “Variability of satellite-derived sea surface height anomaly and its relationship with bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean,” Eur. J. Remote Sens., vol. 48, pp. 465–477, 2015. doi: 10.5721/EuJRS20154826.
M. Ranintyari, Sunarto, M. L. Syamsuddin, and S. Astuty, “Effects of oceanographic factors on spatial distribution of whale shark in Cendrawasih Bay National Park, West Papua,” IOP Conf. Ser.: Earth Environ. Sci., vol. 149, p. 10, 2018. doi: 10.1088/1755-1315/149/1/012050.
A. Gera, A. K. Mitra, D. K. Mahapatra, I. M. Momin, E. N. Rajagopal, and S. Basu, “Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons,” Dyn. Atmos. Oceans, vol. 75, pp. 1–21, 2016, doi: 10.1016/j.dynatmoce.2016.04.002.
J. Gregory, J. Church, G. Boer, and K. Dixon, “Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100,” Clim. Dyn., pp. 225–240, 2001. doi: 10.1007/s003820100180
R. Rajeesh and G. S. Dwarakish, “Satellite oceanography – A review,” Aquatic Procedia, vol. 4, pp. 165–172, 2015. doi: 10.1016/j.aqpro.2015.02.023.
R. Hamzah and T. Prayogo, “Interpolation methods for sea surface height mapping from altimetry satellites in Indonesian seas,” Int. J. Remote Sens. Earth Sci., vol. 11, pp. 33–40, 2014. doi: 10.30536/ijreses.v11i1.13907.
A. Fadlan, D. N. Sugianto, Kunarso, and Z. Muhammad, “Influence of ENSO and IOD to variability of sea surface height in the north and south of Java Island,” J. Phys.: Conf. Ser., vol. 755, no. 1, p. 011001, 2017, doi: 10.1088/1742-6596/755/1/011001.
S. Marpaung and T. Prayogo, “Analisis arus geostropik permukaan laut berdasarkan data satelit altimetri,” in Seminar Nasional Pengindraan Jauh, pp. 561–567, 2014. doi: 10.12962%2Fj24423998.v16i1.8564.
A. Atmadipoera, R. Molcard, G. Madec, S. Wijffels, J. Sprintall, A. Koch-Larrouy, I. Jaya, and A. Supangat, “Characteristics and variability of the Indonesian throughflow water at the outflow straits,” Deep-Sea Res. Part I Oceanogr. Res. Pap., vol. 56, pp. 1942–1954, 2009. doi: 10.1016/j.dsr.2009.06.004.
K. Ichikawa, “Mean seasonal sea surface height variations in and around the Makassar Strait,” Remote Sens., vol. 15, p. 4324, 2023, doi: 10.3390/rs15174324.
J. A. Gulland, Fish Stock Assessment: A Manual of Basic Method. New York, NY, USA: John Wiley & Sons, 1983.
N. P. Purba and A. M. A. Khan, “Upwelling session in Indonesian waters,” World News Nat. Sci., vol. 25, pp. 72–83, 2019.
C. H. Chow and Q. Liu, “Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea,” Geophys. Res. Lett., vol. 39, p. L02601, 2012. doi: 10.1029/2011GL050230.
A. R. Puspita, M. L. Syamsuddin, Subiyanto, F. Syamsudin, and N. P. Purba, “Predictive modeling of eastern little tuna (Euthynnus affinis) catches in the Makassar Strait using the generalized additive model,” J. Mar. Sci. Eng., vol. 11, no. 1, p. 165, 2023. doi: 10.3390/jmse11010165.
I. M. Radjawane and F. Azminuddin, “Seasonal and semi-annual variability of sea surface height in Makassar Strait,” J. Phys.: Conf. Ser., vol. 739, p. 012067, 2016. doi: 10.1088/1742-6596/739/1/012067.
J. A. Church, N. J. White, C. M. Domingues, D. P. Monselesan, and E. R. Miles, “Sea-level and ocean heat-content change,” Int. Geophys., vol. 103, pp. 697–725, 2013, doi: 10.1016/B978-0-12-391851-2.00027-1.
R. D. Susanto and Y. T. Song, “Indonesian throughflow proxy from satellite altimetry and gravimetry,” J. Geophys. Res. Oceans, vol. 120, pp. 2844–2855, 2015. doi: 10.1002/2014JC010382.
V. Silimkar, H. Abe, M. K. Roxy, and Y. Tanimoto, “Projected future changes in the contribution of Indo-Pacific sea surface height variability to the Indonesian throughflow,” J. Oceanogr., vol. 78, pp. 337–352, 2022. doi: 10.1007/s10872-022-00641-w.
K. Pujiana, M. J. McPhaden, A. L. Gordon, and A. M. Napitu, “Unprecedented response of Indonesian Throughflow to anomalous Indo-Pacific climatic forcing in 2016,” J. Geophys. Res. Oceans, vol. 124, pp. 3737–3754, 2019. doi: 10.1029/2018JC014574.
J. Sprintall, S. E. Wijffels, R. Molcard, and I. Jaya, “Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006,” J. Geophys. Res., vol. 114, p. C07001, 2009, doi: 10.1029/2008JC005257.
M. J. Widlansky, X. Long, and F. Schloesser, “Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater,” Commun. Earth Environ., vol. 1, no. 9, pp. 1–12, 2020. doi: 10.1038/s43247-020-0008-8.
Z. P. Feng, W. Yu, Y. Zhang, Y. K. Li, and X. J. Chen, “Habitat variations of two commercially valuable species along the Chilean waters under different-intensity El Niño events,” Front. Mar. Sci., vol. 9, p. 919620, 2022. doi: 10.3389/fmars.2022.919620.
K. Nimit, N. K. Masuluri, A. M. Berger, R. P. Bright, S. Prakash, T. V. S. Udayabhaskar, T. S. Kumar, P. Rohit, A. Tiburtius, S. Ghosh, and S. P. Varghese, “Oceanographic preferences of yellowfin tuna (Thunnus albacares) in warm stratified oceans: A remote sensing approach,” Int. J. Remote Sens., pp. 1–19, 2020. doi: 10.1080/01431161.2019.1707903.
P. Lehodey, M. Bertignac, J. Hampton, A. Lewis, and J. Picaut, “El Niño Southern Oscillation and tuna in the western Pacific,” Nature, vol. 389, pp. 715–718, 1997. doi: 10.1038/39575.
W. B. White, K. A. Gloersen, F. Marsac, and Y. M. Tourre, “Influence of coupled Rossby waves on primary productivity and tuna abundance in the Indian Ocean,” J. Oceanogr., vol. 60, pp. 531–541, 2004. doi: 10.1023/B:JOCE.0000038346.28927.21.
M. L. Syamsuddin, A. R. Puspita, F. Syamsudin, Y. N. Ihsan, Sunarto, and M. Zainuddin, “Variation in eastern little tuna (Euthynnus affinis) catches related to El Niño Southern Oscillation (ENSO) events in the Makassar Strait,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1289, p. 012007, 2023. doi: 10.1088/1755-1315/1289/1/012007.