Composition of Non-Volatile Flavor Compounds in Fresh and Dried Sea Lettuce (Ulva lactuca)

Main Article Content

Lisa Gabriela
Rusky Intan Pratama
Junianto

Abstract

Drying has the potential to alter the physical, chemical, and organoleptic characteristics of food materials. This study aims to identify the composition of non-volatile flavor compounds in fresh and dried sea lettuce (Ulva lactuca). The identification of non-volatile flavor compounds was conducted using amino acid profiling through High-Performance Liquid Chromatography (HPLC). The organoleptic characteristics, including appearance, aroma, texture, and taste of fresh and dried sea lettuce samples, were assessed through a simple descriptive test. The quantitative amino acid analysis data and the descriptive test results were analyzed using a comparative descriptive method. The findings revealed that both fresh and dried Ulva lactuca contain 17 types of amino acids, comprising 9 essential amino acids and 8 non-essential amino acids, which influence flavor characteristics. The descriptive test indicated that fresh Ulva lactuca is characterized by clean, shiny, and soft light green to dark green sheets with an elastic texture and a distinctive fresh seaweed aroma. In contrast, dried Ulva lactuca exhibited a yellowish-green color, a stiff and brittle texture, and a stronger salty taste with a slight umami sensation. These findings highlight the potential of Ulva lactuca as a versatile ingredient in food product development, particularly for enhancing flavor and nutritional value.

Downloads

Download data is not yet available.

Article Details

How to Cite
Composition of Non-Volatile Flavor Compounds in Fresh and Dried Sea Lettuce (Ulva lactuca). (2025). Jurnal Biota. https://doi.org/10.19109/biota.v0i0.25949
Section
Artikel

How to Cite

Composition of Non-Volatile Flavor Compounds in Fresh and Dried Sea Lettuce (Ulva lactuca). (2025). Jurnal Biota. https://doi.org/10.19109/biota.v0i0.25949

References

C. Litaay, H. Arfah, and F. Pattipeilohy, “The Potential of Seaweed Resources on the Coastal of Ambon Island as Food Ingredient,” J Pengolah Has Perikan Indones, vol. 25, no. 3, pp. 405–417, 2022, doi: 10.17844/jphpi.v25i3.41647.

R. N. Safia, “Jenis dan Sebaran Makroalga di Zona Intertidal Pantai Ngandong dan Drini Kabupaten Gunung Kidul,” Gadjah Mada University, 2013.

H. Mohan, Madhusudan, and R. Baskaran, “The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives,” Apr. 01, 2023, Elsevier B.V. doi: 10.1016/j.algal.2023.103069.

A. S. Windyaswari, O. M. Luthfi, I. P. Ayu, K. H. N. Husna, and R. Maghfira, “Profil Fitokimia Selada laut (Ulva lactuca) dan Ganggang hijau (Spirogyra porticalis) sebagai Bahan Alam Bahari Potensial dari Perairan Indonesia,” Kartika : Jurnal Ilmiah Farmasi, vol. 7, no. 2, pp. 1–14, 2019.

V. V. Kumar and P. Kaladharan, “Amino acids in the seaweeds as an alternate source of protein for animal feed Seaweeds as source of protein for animal feed,” Journal of the Marine Biological Association of India, vol. 49, pp. 35–40, 2015, [Online]. Available: https://www.researchgate.net/publication/268449200

P. A. Pramudya, A. S. Fahmi, and L. Rianingsih, “Optimization of Temperature and Drying Time of Nori Made from Ulva lactuca and Gelidium sp. With the Addition of Shrimp Head Powder Flavor Using Response Surface Methodology,” 2022.

A. Ramu Ganesan, R. G. Abirami, and S. Kowsalya, “Nutrient and nutraceutical potentials of seaweed biomass Ulva lactuca and Kappaphycus alvarezii,” Journal of Agricultural Science and Technology, vol. 5, no. 1, pp. 109–115, 2011, [Online]. Available: https://www.researchgate.net/publication/288267856

R. P. Magdugo et al., “An analysis of the nutritional and health values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)—Two chlorophyta collected from the Philippines,” Molecules, vol. 25, no. 12, Jun. 2020, doi: 10.3390/molecules25122901.

L. C. Hofmann et al., “The green seaweed Ulva: tomorrow’s ‘wheat of the sea’ in foods, feeds, nutrition, and biomaterials,” 2024, Taylor and Francis Ltd. doi: 10.1080/10408398.2024.2370489.

C. D. Poeloengasih, M. Srianisah, T. H. Jatmiko, and D. J. Prasetyo, “Postharvest handling of the edible green seaweed Ulva lactuca: Mineral content, microstructure, and appearance associated with rinsing water and drying methods,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Apr. 2019. doi: 10.1088/1755-1315/253/1/012006.

N. Nurhayati, M. Rais, A. Sukainah, J. P, and N. Lestari, “Pengaruh Metode Pengeringan terhadap Mutu RUmput Laut Eucheuma Cottonii dalam Pengolahan ATCC (Alkali Treated Cottonii Chips),” Jurnal Pendidikan Teknologi Pertanian, vol. 8, no. 2, p. 153, Aug. 2022, doi: 10.26858/jptp.v8i2.23140.

E. Tianasari, M. S. Junaidi, and S. Distantina, “Nori Berbasis Rumput Laut Ulva lactuca Linnaeus dan Eucheuma cottonii: Pengaruh Komposisi,” Seminar Nasional Teknik Kimia Ecosmart, 2018.

T. M. Wallace, “Multisensory Perception: The Building of Flavor Representations,” Current Biology, vol. 25, no. 1, pp. R986–R988, 2015, doi: 10.1895/wormbook.1.11.1.

X. Tian et al., “Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis,” Food Chem, vol. 459, pp. 1–17, 2024, doi: 10.1016/j.foodchem.2024.140455.

Y. Zhao et al., “Comparative evaluation of sensory and instrumental flavor profiles of four edible microalgae: Spirulina platensis, Chlorella pyrenoidosa, Chlamydomonas reinhardtii, and Haematococcus pluvialis,” Algal Res, vol. 82, Aug. 2024, doi: 10.1016/j.algal.2024.103628.

M. N. Norakma, A. H. Zaibunnisa, and W. A. R. W. Razarinah, “The changes of phenolics profiles, amino acids and volatile compounds of fermented seaweed extracts obtained through microbial fermentation,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 815–821. doi: 10.1016/j.matpr.2021.02.366.

Z. Yuan et al., “Metabolomic analysis of umami taste variation in Pyropia haitanensis throughout the harvest cycle,” Food Chem, vol. 460, Dec. 2024, doi: 10.1016/j.foodchem.2024.140468.

R. A. A. Fivarani, R. I. Pratama, A. Nurhayati, and E. Liviawaty, “Composition of Flavour Non Volatile Compound Steamed Gourami (Osphronemus gouramy),” Asian Journal of Fisheries and Aquatic Research, vol. 23, no. 1, pp. 31–41, Jun. 2023, doi: 10.9734/ajfar/2023/v23i1594.

P. Stévant et al., “Effects of drying on the nutrient content and physico-chemical and sensory characteristics of the edible kelp Saccharina latissima,” J Appl Phycol, vol. 30, no. 4, pp. 2587–2599, Aug. 2018, doi: 10.1007/s10811-018-1451-0.

E. Uribe, A. Vega-Gálvez, V. García, A. Pastén, J. López, and G. Goñi, “Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp.,” J Appl Phycol, vol. 31, no. 3, pp. 1967–1979, 2019, doi: 10.1007/s10811-018-1686-9.

E. Uribe, A. Vega-Gálvez, V. García, A. Pastén, J. López, and G. Goñi, “Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp.,” J Appl Phycol, vol. 31, no. 3, pp. 1967–1979, Jun. 2019, doi: 10.1007/s10811-018-1686-9.

N. Noaman, F. Akl, M. Abdel-Kareem, M. Shafik, and W. Menesi, “EFFECT OF ULTRAVIOLET-B IRRADIATION ON FATTY ACIDS, AMINO ACIDS, PROTEIN CONTENTS, ENZYME ACTIVITIES AND ULTRASTRUCTURE OF SOME ALGAE,” Egyptian Journal of Phycology, vol. 14, no. 1, pp. 67–101, Nov. 2013, doi: 10.21608/egyjs.2013.115212.

U. G. Bak, C. W. Nielsen, G. S. Marinho, Ó. Gregersen, R. Jónsdóttir, and S. L. Holdt, “The seasonal variation in nitrogen, amino acid, protein and nitrogen-to-protein conversion factors of commercially cultivated Faroese Saccharina latissima,” Algal Res, vol. 42, pp. 1–31, 2019, doi: 10.1016/j.algal.2019.101576.

M. Machado, S. Machado, F. B. Pimentel, V. Freitas, R. C. Alves, and M. B. P. P. Oliveira, “Amino acid profile and protein quality assessment of macroalgae produced in an integrated multi-trophic aquaculture system,” Foods, vol. 9, no. 10, pp. 1–15, 2020, doi: 10.3390/foods9101382.

H. Xie et al., “Dynamic Changes in Volatile Flavor Compounds, Amino Acids, Organic Acids, and Soluble Sugars in Lemon Juice Vesicles during Freeze-Drying and Hot-Air Drying,” Foods, vol. 11, no. 18, pp. 1–18, Sep. 2022, doi: 10.3390/foods11182862.

Y. Bi et al., “Effect of different drying methods on the amino acids, α-dicarbonyls and volatile compounds of rape bee pollen,” Food Science and Human Wellness, vol. 13, no. 1, pp. 517–527, 2024, doi: 10.26599/FSHW.2022.9250045.

R. Phongphisutthinant et al., “Effect of Conventional Humid–Dry Heating through the Maillard Reaction on Chemical Changes and Enhancement of In Vitro Bioactivities from Soy Protein Isolate Hydrolysate–Yeast Cell Extract Conjugates,” Foods, vol. 13, no. 3, pp. 1–21, 2024, doi: 10.3390/foods13030380.

M. Holecek and L. Sispera, “Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats,” Nutrients, vol. 8, no. 4, 2016, doi: 10.3390/nu8040206.

T. T. Liu, N. Xia, Q. Z. Wang, and D. W. Chen, “Identification of the non-volatile taste-active components in crab sauce,” Foods, vol. 8, no. 8, pp. 1–10, 2019, doi: 10.3390/foods8080324.

A. A. M. i Líndez and W. Reith, “Arginine-dependent immune responses,” Cellular and Molecular Life Sciences, vol. 78, no. 13, pp. 5303–5324, 2021, doi: 10.1007/s00018-021-03828-4.

J. Gambardella, W. Khondkar, M. B. Morelli, X. Wang, G. Santulli, and V. Trimarco, “Arginine and endothelial function,” Biomedicines, vol. 8, no. 8, pp. 1–25, 2020, doi: 10.3390/BIOMEDICINES8080277.

R. K. Kulis-Horn, M. Persicke, and J. Kalinowski, “Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum,” Microb Biotechnol, vol. 7, no. 1, pp. 5–25, Jan. 2014, doi: 10.1111/1751-7915.12055.

M. Holeček, “Histidine in health and disease: Metabolism, physiological importance, and use as a supplement,” Nutrients, vol. 12, no. 3, pp. 1–20, 2020, doi: 10.3390/nu12030848.

A. C. C. C. Branco, F. S. Y. Yoshikawa, A. J. Pietrobon, and M. N. Sato, “Role of Histamine in Modulating the Immune Response and Inflammation,” Mediators Inflamm, vol. 2018, pp. 1–10, 2018, doi: 10.1155/2018/9524075.

I. Ayala, L. Chiari, R. Kerfah, J. Boisbouvier, P. Gans, and O. Hamelin, “Asymmetric Synthesis of Methyl Specifically Labelled L -Threonine and Application to the NMR Studies of High Molecular Weight Proteins,” ChemistrySelect, vol. 5, no. 17, pp. 5092–5098, 2020, doi: 10.1002/slct.202000827ï.

C. V. Lisnahan and O. R. Nahak, “Effects of L-Threonine and L-Tryptophan supplementation on the body weight and internal organs weight of native chickens aged 14 weeks,” IOP Conf Ser Earth Environ Sci, vol. 387, no. 1, pp. 1–4, 2019, doi: 10.1088/1755-1315/387/1/012016.

X. Mao, X. Zeng, and G. Wu, “Specific roles of threonine in intestinal mucosal integrity and barrier function,” Frontiers in Bioscience E3, vol. 1, no. 1, pp. 1192-1200, 2011, [Online]. Available: https://www.researchgate.net/publication/51174299

S. Hakimi, N. M. Kari, N. Ismail, M. N. Ismail, and F. Ahmad, “Evaluation of taste active peptides and amino acids from anchovy proteins in fish sauce by in silico approach,” Food Sci Biotechnol, vol. 31, no. 7, pp. 767–785, 2022, doi: 10.1007/s10068-022-01097-w.

C. Wang et al., “The biological functions and metabolic pathways of valine in swine,” J Anim Sci Biotechnol, vol. 14, no. 135, pp. 1–15, 2023, doi: 10.1186/s40104-023-00927-z.

O. Stefańska, J. Rudnicki, M. Szczepocki, and J. M. Jurek, “Narrative literature review: Effect of Branched-chain Amino Acids (BCAAs) on muscle hypertrophy and athletic performance,” Tanjungpura Journal of Coaching Research, vol. 2, no. 2, pp. 46–59, 2024, doi: 10.26418/tajor.v2i2.78568.

H. Suzuki et al., “Intake of Seven Essential Amino Acids Improves Cognitive Function and Psychological and Social Function in Middle-Aged and Older Adults: A Double-Blind, Randomized, Placebo-Controlled Trial,” Front Nutr, vol. 7, p. 1, Nov. 2020, doi: 10.3389/fnut.2020.586166.

R. Elango, “Methionine nutrition and metabolism: Insights from animal studies to inform human nutrition,” Journal of Nutrition, vol. 150, pp. 2518S-2523S, 2020, doi: 10.1093/jn/nxaa155.

J. Jankowski, M. Kubińska, and Z. Zduńczyk, “Nutritional and immunomodulatory function of methionine in poultry diets - A review,” Annals of Animal Science, vol. 14, no. 1, pp. 17–31, 2014, doi: 10.2478/aoas-2013-0081.

C. Regina, M. Loppies, D. A. N. Apituley, B. D. Sormin, and B. Setha, “Amino Acid Profile of Tuna Loin Sprayed by Filtered Smoke During Frozen Storage,” Int J Curr Res, vol. 12, no. 09, pp. 13515–13519, 2020, doi: 10.24941/ijcr.39600.09.2020.

H. F. E. Heng, X. L. Ong, and P. Y. E. Chow, “Antioxidant action and effectiveness of sulfur-containing amino acid during deep frying,” J Food Sci Technol, vol. 57, no. 3, pp. 1150–1157, 2020, doi: 10.1007/s13197-019-04150-5.

A. Parthasarathy, P. J. Cross, R. C. J. Dobson, L. E. Adams, M. A. Savka, and A. O. Hudson, “A Three-Ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals,” Front Mol Biosci, vol. 5, no. 29, pp. 1–30, 2018, doi: 10.3389/fmolb.2018.00029.

V. Šimat, I. Hamed, S. Petrǐcevíc, and T. Bogdanovíc, “Seasonal Changes in Free Amino Acid and Fatty Acid Compositions of Sardines, Sardina pilchardus (Walbaum, 1792): Implications for Nutrition,” Foods, vol. 9, no. 7, pp. 1–12, 2020, doi: 10.3390/foods9070867.

P. C. E. Fitzgerald, B. Manoliu, B. Herbillon, R. E. Steinert, M. Horowitz, and C. Feinle-Bisset, “Effects of L-Phenylalanine on Energy Intake And Glycaemia—Impacts on Appetite Perceptions, Gastrointestinal Hormones and Gastric Emptying in Healthy Males,” Nutrients, vol. 12, no. 6, pp. 1–17, 2020, doi: 10.3390/nu12061788.

A. Dimou, V. Tsimihodimos, and E. Bairaktari, “The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology,” Int J Mol Sci, vol. 23, no. 7, pp. 1–18, 2022, doi: 10.3390/ijms23074022.

Z. Huang et al., “Effects of dietary isoleucine levels on the growth performance, feed utilization, and serum biochemical indices of juvenile golden pompano, trachinotus ovatus,” Israeli Journal of Aquaculture - Bamidgeh, vol. 67, pp. 1–9, 2015, doi: 10.46989/001c.20679.

S. Zhang, X. Zeng, M. Ren, X. Mao, and S. Qiao, “Novel metabolic and physiological functions of branched chain amino acids: A review,” J Anim Sci Biotechnol, vol. 8, no. 1, pp. 1–12, 2017, doi: 10.1186/s40104-016-0139-z.

T. Ispoglou, H. White, T. Preston, S. McElhone, J. McKenna, and K. Hind, “Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65-75 years,” Eur J Clin Nutr, vol. 70, no. 2, pp. 182–188, Feb. 2016, doi: 10.1038/ejcn.2015.91.

J. A. B. Pedroso, T. T. Zampieri, and J. Donato, “Reviewing the effects of l-leucine supplementation in the regulation of food intake, energy balance, and glucose homeostasis,” Nutrients, vol. 7, no. 5, pp. 3914–3937, 2015, doi: 10.3390/nu7053914.

M. Idrees, A. R. Mohammad, N. Karodia, and A. Rahman, “Multimodal role of amino acids in microbial control and drug development,” Antibiotics, vol. 9, no. 6, pp. 1–23, 2020, doi: 10.3390/antibiotics9060330.

R. Aggarwal and K. Bains, “Protein, lysine and vitamin D: critical role in muscle and bone health,” Crit Rev Food Sci Nutr, vol. 62, no. 9, pp. 2548–2559, 2022, doi: 10.1080/10408398.2020.1855101.

S. Gudipati, “Efficacy & Significance of LYSO HERB Herbal Lysine in the nutrition, metabolism and health in Poultry & Efficacy and significance of the phytogenic METHO ADD Herbal Methionine as replacer of Synthetic DL- Methionine in nutrition and health of Poultry,” Revista Sistemática, vol. 14, no. 3, pp. 482–493, 2024, doi: 10.56238/rcsv14n3-004.

R. Gunarathne, X. Guan, T. Feng, Y. Zhao, and J. Lu, “L-lysine dietary supplementation for childhood and adolescent growth: Promises and precautions,” J Adv Res, vol. xxx, pp. 1–16, 2024, doi: 10.1016/j.jare.2024.05.014.

O. O. Sofronov, G. Giubertoni, A. Pérez De Alba Ortíz, B. Ensing, and H. J. Bakker, “Peptide Side-COOH Groups Have Two Distinct Conformations under Biorelevant Conditions,” Journal of Physical Chemistry Letters, vol. 11, no. 9, pp. 3466–3472, 2020, doi: 10.1021/acs.jpclett.0c00711.

M. Holeček, “Aspartic Acid in Health and Disease,” Nutrients, vol. 15, no. 18, pp. 1–25, 2023, doi: 10.3390/nu15184023.

P. Praveen Kumar, B. Mounika, D. Sarvamangala, and G. 2 Git, “Production of Aspartic Acid-A Short Review,” International Journal of Engineering Trends and Technology, vol. 45, no. 6, pp. 254–257, 2017, [Online]. Available: http://www.ijettjournal.org

S. Dutta, S. Ray, and K. Nagarajan, “Glutamic acid as anticancer agent: An overview,” Saudi Pharmaceutical Journal, vol. 21, no. 4, pp. 337–343, Oct. 2013, doi: 10.1016/j.jsps.2012.12.007.

V. Cruzat, M. M. Rogero, K. N. Keane, R. Curi, and P. Newsholme, “Glutamine: Metabolism and immune function, supplementation and clinical translation,” Nutrients, vol. 10, no. 11, pp. 1–31, 2018, doi: 10.3390/nu10111564.

M. Holeček, “Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid,” Nutrients, vol. 14, no. 9, pp. 1–15, 2022, doi: 10.3390/nu14091987.

S. M. M. Phone Myint and L. Y. Sun, “L-serine: Neurological Implications and Therapeutic Potential,” Biomedicines, vol. 11, no. 8, pp. 1–11, 2023, doi: 10.3390/biomedicines11082117.

V. Stojanoski et al., “Removal of the side chain at the active-site serine by a glycine substitution increases the stability of a wide range of serine β-lactamases by relieving steric strain,” Biochemistry, vol. 55, no. 17, pp. 2479–2490, 2016, doi: 10.1021/acs.biochem.6b00056.

M. A. Razak, P. S. Begum, B. Viswanath, and S. Rajagopal, “Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review,” Oxid Med Cell Longev, vol. 2017, pp. 1–8, 2017, doi: 10.1155/2017/1716701.

K. A. Aguayo-Cerón et al., “Glycine: The Smallest Anti-Inflammatory Micronutrient,” Int J Mol Sci, vol. 24, no. 14, pp. 1–16, 2023, doi: 10.3390/ijms241411236.

V. Kubyshkin and N. Budisa, “The alanine world model for the development of the amino acid repertoire in protein biosynthesis,” Int J Mol Sci, vol. 20, no. 21, pp. 1–17, 2019, doi: 10.3390/ijms20215507.

S. U. Dandare, I. J. Ezeonwumelu, T. S. Shinkafi, U. F. Magaji, A. A. I. Adio, and K. Ahmad, “L-alanine supplementation improves blood glucose level and biochemical indices in alloxan-induced diabetic rats,” J Food Biochem, vol. 45, no. 1, 2021, doi: 10.1111/jfbc.13590.

Y. Hatazawa, K. Qian, D. W. Gong, and Y. Kamei, “PGC-1α regulates alanine metabolism in muscle cells,” PLoS One, vol. 13, no. 1, Jan. 2018, doi: 10.1371/journal.pone.0190904.

M. Bachmann, “Statistical analysis of structural transitions in small systems,” Phys Procedia, vol. 3, no. 3, pp. 1387–1395, 2010, doi: 10.1016/j.phpro.2010.01.198.

R. Boča, J. Štofko, and R. Imrich, “Ab initio study of molecular properties of l-tyrosine,” J Mol Model, vol. 29, no. 8, pp. 1–9, 2023, doi: 10.1007/s00894-023-05648-8.

Y. Yu et al., “Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of Unnatural Tyrosine Analogs,” J Am Chem Soc, vol. 137, no. 14, pp. 4594–4597, 2015, doi: 10.1021/ja5109936.

P. Ladiwala et al., “Ala-Cys-Cys-Ala dipeptide dimer alleviates problematic cysteine and cystine levels in media formulations and enhances CHO cell growth and metabolism,” Metab Eng, vol. 85, pp. 105–115, Sep. 2024, doi: 10.1016/j.ymben.2024.07.008.

M. Kuczyńska, P. Jakubek, and A. Bartoszek, “More than Just Antioxidants: Redox-Active Components and Mechanisms Shaping Redox Signalling Network,” Antioxidants, vol. 11, no. 12, pp. 1–22, 2022, doi: 10.3390/antiox11122403.

A. Cunningham et al., “The nonessential amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia,” Blood Adv, vol. 8, no. 1, pp. 56–69, 2024, doi: 10.1182/bloodadvances.2023010786.

N. Clemente Plaza, M. Reig García-Galbis, and R. M. Martínez-Espinosa, “Effects of the Usage of l-Cysteine (l-Cys) on Human Health,” Molecules, vol. 23, no. 3, pp. 1–13, 2018, doi: 10.3390/molecules23030575.

S. L. Christgen and D. F. Becker, “Role of proline in pathogen and host interactions,” Antioxid Redox Signal, vol. 30, no. 4, pp. 683–709, 2019, doi: 10.1089/ars.2017.7335.

M. T. S. L. Neta and N. Narain, “Volatile Components in Seaweeds,” Examines in Marine Biology & Oceanography, vol. 2, no. 2, pp. 195–201, 2018, doi: 10.31031/eimbo.2018.02.000535.

V. Figueroa, A. Bunger, J. Ortiz, and J. M. Aguilera, “Sensory descriptors for three edible Chilean seaweeds and their relations to umami components and instrumental texture,” J Appl Phycol, vol. 34, no. 6, pp. 3141–3156, 2022, doi: 10.1007/s10811-022-02848-2.

J. Wu et al., “Comparative evaluation of physical characteristics and volatile flavor components of Bangia fusco-purpurea subjected to hot air drying and vacuum freeze-drying,” Curr Res Food Sci, vol. 7, p. 1, 2023, doi: 10.1016/j.crfs.2023.100624.

K. Dudek et al., “Influence of the Drying Method on the Volatile Component Profile of Hypericum perforatum Herb: A HS-SPME-GC/MS Study,” Processes, vol. 10, no. 12, pp. 1–11, 2022, doi: 10.3390/pr10122593.

D. Birch, K. Skallerud, and N. A. Paul, “Who are the future seaweed consumers in a Western society? Insights from Australia,” British Food Journal, vol. 121, no. 2, pp. 603–615, May 2019, doi: 10.1108/BFJ-03-2018-0189.

N. Mingu, K. M. Saad, H. Mamat, S. Siddiquee, M. H. A. Majid, and M. S. Sarjadi, “Comparative Study of Drying Methods on Seaweeds (Kappaphycus sp. and Padina sp.) Based on Their Phytochemical and Polysaccharaide Content Located in Sabah,” Borneo Journal of Resource Science and Technology, vol. 14, no. 1, pp. 112–122, 2024, doi: 10.33736/bjrst.6089.2024.

N. Atsumi et al., “Chloride ions evoke taste sensations by binding to the extracellular ligandbinding domain of sweet/umami taste receptors,” Elife, vol. 12, pp. 1–19, 2023, doi: 10.7554/eLife.84291.

M. Xiao, T. Wang, C. Tang, M. He, Y. Li, and X. Li, “Effects of Different Drying Methods on Amino Acid Metabolite Content and Quality of Ophiocordyceps sinensis by LC-MS/MS Combined with Multivariate Statistical Methods,” Metabolites, vol. 14, no. 8, Aug. 2024, doi: 10.3390/metabo14080459.