The potential for utilizing  non-productive trunk of sugar palm (Arenga pinnata Merr) as Pulp and Wood Energy

Main Article Content

Silmi Yusri Rahmadani
Alponsin
Dimas Surya Pratama
Tesri Maideliza

Abstract

The sugar palm (Arenga pinnata Merr) presents significant potential as a source of biomass energy and raw material for pulp production. In West Sumatra, particularly within the Tanah Datar and Lima Puluh Kota regencies, the cultivation of this plant spans approximately 376.75 hectares and 285.00 hectares, respectively. Although sap extraction for palm sugar and bioethanol remains the predominant application, the non-productive trunks are largely underexploited. This study aimed to evaluate the physical and chemical properties of these trunks, focusing on fiber dimensions, chemical composition, and calorific value. The results indicated that trunks sourced from Lima Puluh Kota exhibited longer fiber lengths (2.70-2.97 mm), power felting (90.33 µm), and higher Runkel ratios, categorizing them as Class I in terms of fiber quality for pulp production. Conversely, samples from Tanah Datar were classified as Class II. In terms of chemical composition, the cellulose content (ranging from 35.21% to 64.63%) and moderate levels of lignin (between 8.02% and  18.40%), both of which are advantageous for pulping processes. However, the calorific values, which ranged from 2,675 to 3,374 cal/g, were found to be below the standards established for biomass fuels at both national and international levels. These findings imply that the unproductive trunks of sugar palm are more appropriately utilized in the pulp and paper industry rather than for bioenergy production. Such optimal utilization could contribute to the development of a circular economy while also enhancing the value provided to local communities.

Downloads

Download data is not yet available.

Article Details

How to Cite
The potential for utilizing  non-productive trunk of sugar palm (Arenga pinnata Merr) as Pulp and Wood Energy. (2025). Jurnal Biota. https://doi.org/10.19109/biota.v0i0.27559
Section
Artikel

How to Cite

The potential for utilizing  non-productive trunk of sugar palm (Arenga pinnata Merr) as Pulp and Wood Energy. (2025). Jurnal Biota. https://doi.org/10.19109/biota.v0i0.27559

References

Directorate General of Estates, “Statistics of National Non-Leading Estate Crops Commodity, 2020–2022,” Jakarta, 2022. Accessed: Mar. 10, 2025. [Online]. Available: https://ditjenbun.pertanian.go.id/template/uploads/2022/11/BUKU-STATISIK-NON-UNGGULAN-2020-2022.pdf

M. D. D. Maharani and L. Febrina, “Potensi Biomassa Tanaman Arenga pinnata sebagai Alternatif Bahan Baku Energi Terbarukan (Kawasan Agro-Forestry Eko-Wisata Cisolok, Sukabumi, Jawa Barat),” Seminar Nasional Pariwisata dan Kewirausahaan (SNPK), vol. 3, pp. 759–767, 2024.

Kasmaniar et al., “Kasmaniar et al_2023,” Jurnal Serambi Engineering, vol. 8, no. 1, pp. 4957–4964, 2023.

W. Rosli, W. Rosli Wan Daud, and K.-N. Law, “Review of oil palm fibers,” 2011. [Online]. Available: www.ecofuture.com.my/metro-knight.htm

T. Pulingam et al., “Oil palm trunk waste: Environmental impacts and management strategies,” Dec. 01, 2022, Elsevier B.V. doi: 10.1016/j.indcrop.2022.115827.

L. Q. Low et al., “Physical and mechanical properties enhancement of beaten oil palm trunk pulp and paper by optimizing starch addition: Towards sustainable packaging solutions,” Ind Crops Prod, vol. 221, Dec. 2024, doi: 10.1016/j.indcrop.2024.119232.

D. A. Indrawan, “Pembuatan dan Analisa Pulp dengan Bahan Baku Serat Pohon Aren pada Skala Laboratorium,” Kreator, vol. 10, no. 1, pp. 21–25, Jul. 2023, doi: 10.46961/kreator.v10i1.760.

M. Imraan, R. A. Ilyas, A. S. Norfarhana, S. P. Bangar, V. F. Knight, and M. N. F. Norrrahim, “Sugar palm (Arenga pinnata) fibers: new emerging natural fibre and its relevant properties, treatments and potential applications,” May 01, 2023, Elsevier Editora Ltda. doi: 10.1016/j.jmrt.2023.04.056.

A. Ahmudi, I. Garniwa, C. Hudaya, S. M. Nur, and A. Sugiyono, “Multi-regional Analysis of Biomass Agriculture Waste Potential and Bio-pellet Development for Electricity in Indonesia,” in AIP Conference Proceedings, American Institute of Physics, Mar. 2024. doi: 10.1063/5.0203364.

M. Sillanpää and C. Ncibi, “Biomaterials,” in A Sustainable Bioeconomy, Cham: Springer International Publishing, 2017, pp. 185–231. doi: 10.1007/978-3-319-55637-6_6.

E. Wheeler and P. Baas, “IAWA List of Microcopie Features for Hardwood Identification,” 1989. [Online]. Available: https://www.researchgate.net/publication/294088872

Directorate General of Forestry, Handbook of Indonesian forestry. Jakarta: Ministry of Agriculture, 1976.

Association Official Analitical Chemist, Official methods of Analysis, 16th ed. USA: AOAC International, Maryland, 1999.

Association Official Analitical Chemist, Official methods of Analysis, 18th ed. USA: AOAC International, Maryland, 2005.

A. J. Panshin and C. de Zeeuw, Textbook of Wood Technology. New York: McGraw-Hill Book Company, 1980.

B. de Guth and Ragonese A., “Evaluación de las características del leño en relación a la calidad del papel de algunos híbridos de sauces obtenidos en Castelar,” IDIA, pp. 393–394, 1980.

N. Nazari, M. Bahmani, S. Kahyani, M. Humar, and G. Koch, “Geographic variations of thewood density and fiber dimensions of the Persian oak wood,” Forests, vol. 11, no. 9, Sep. 2020, doi: 10.3390/f11091003.

Y. I. Mandang and N. S. Sudarna, “Anatomi Batang Aren (Arenga pinnata MERR.),” Jurnal Penelitian Hasil Hutan, vol. 6, no. 5, pp. 334–339, 1989.

A. Nur Rachman and T. Silitonga, Dimensi serat be¬ berapa jenis kayu Sumatera Selatan. . Bogor: Lembaga Penelitian Hasil Hutan, 1973.

W. T. Istikowati et al., “Chemical Content and Anatomical Characteristics of Sago (Metroxylon sagu Rottb.) Frond from South Kalimantan, Indonesia,” Indonesian Journal of Forestry Research, vol. 10, no. 2, pp. 185–194, 2023, doi: 10.59465/ijfr.2023.10.2.185-194.

C. Sorce, A. Giovannelli, L. Sebastiani, and T. Anfodillo, “Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees,” Jun. 2013. doi: 10.1007/s00299-013-1431-4.

M. H. Kim et al., “Wood transcriptome profiling identifies critical pathway genes of secondary wall biosynthesis and novel regulators for vascular cambium development in Populus,” Genes (Basel), vol. 10, no. 9, Sep. 2019, doi: 10.3390/genes10090690.

M. R. Borukanlu, O. H. Zadeh, P. Moradpour, and E. Khedive, “Effects of growth rate of eastern poplar trees on the chemical and morphological characteristics of wood fibers,” European Journal of Wood and Wood Products, vol. 79, no. 6, pp. 1479–1494, Nov. 2021, doi: 10.1007/s00107-021-01711-4.

J. E. Atchison, Data on non-wood plant fibers. In: The Secondary fibers and non-wood pulping, 3rd ed. Atlanta, USA: TAPPI Press, 1987.

D. Lestari, R. N. Vera, and F. Fahrussiam, “Anatomical Properties and Quality Of African Wood Fiber as A Raw Material For Pulp and Paper,” Perennial, vol. 19, no. 2, pp. 17–22, 2023, doi: 10.24259/perennial.v19i2.31192.

M. Kiaei, M. Tajik, and R. Vaysi, “Chemical and biometrical properties of plum wood and its application in pulp and paper production,” Maderas: Ciencia y Tecnologia, vol. 16, no. 3, pp. 313–322, 2014, doi: 10.4067/S0718-221X2014005000024.

I. Wayan, S. Parta, and I. Wayan Sudana, “The Creation of Furniture Products Design From Stem Waste of Sugar Palm Tree (Arenga Pinnata),” 2017.

M. R. M. Huzaifah, S. M. Sapuan, Z. Leman, M. R. Ishak, and M. A. Maleque, “A review of sugar palm (Arenga pinnata): Application, fibre characterisation and composites,” Multidiscipline Modeling in Materials and Structures, vol. 13, no. 4, pp. 678–698, Nov. 2017, doi: 10.1108/MMMS-12-2016-0064.

N. A. Sadiku and K. A. Abdukareem, “Fibre morphological variations of some Nigerian Guinea savannah timber species,” Maderas: Ciencia y Tecnologia, vol. 21, no. 2, pp. 239–248, 2019, doi: 10.4067/S0718-221X2019005000211.

S. Augustina, I. Wahyudi, I. W. Darmawan, and J. Malik, “Ciri Anatomi, Morfologi Serat, dan Sifat Fisis Tiga Jenis Lesser-Used Wood Species Asal Kalimantan Utara, Indonesia,” Jurnal Ilmu Pertanian Indonesia, vol. 25, no. 4, pp. 599–609, Oct. 2020, doi: 10.18343/jipi.25.4.599.

T. Ona et al., “Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations,” Wood Sci Technol, vol. 35, no. 3, pp. 229–243, Jun. 2001, doi: 10.1007/s002260100090.

R. Yahya, J. Sugiyama, D. Silsia, and J. Gril, “Some Anatomical Features of an Acacia Hybrid, A. mangium and A. auriculiformis Grown in Indonesia with Regard to Pulp Yield and Paper Strength,” Journal of Tropical Forest Science, vol. 22, no. 3, pp. 343–351, 2010.

E. S. Abd El-Sayed, M. El-Sakhawy, and M. A. M. El-Sakhawy, “Non-wood fibers as raw material for pulp and paper industry,” Nord Pulp Paper Res J, vol. 35, no. 2, pp. 215–230, Jun. 2020, doi: 10.1515/npprj-2019-0064.

Badan Standarisasi Nasional, “ Pelet Kayu,” Jakarta, 2014.

T. K. Dhamodaran, R. Gnanaharan, and P. K. Thulasidas, “Calorific value variation in coconut stem wood *,” Springer-Verlag, 1989.

H. A. Umar, S. A. Sulaiman, R. K. Ahmad, and S. N. Tamili, “Characterisation of oil palm trunk and frond as fuel for biomass thermochemical,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/863/1/012011.

W. O. N. T. Dewi, F. Dewi, Ardiansyah, Hijria, and W. O. S. Ilmawati, “Analisis Kandungan Hemiselulosa, Selulosa, dan Lignin Pelepah Aren (Arenga pinnata Merr.) Berdasarkan Variasi Umur,” BioWallacea: Jurnal Penelotian Biologi, vol. 8, no. 1, pp. 29–35, 2021.

J. G. B. J. L. Haygreen, Forest Products and Wood Science: An Introduction. IOWA: Iowa State University Press, 1989.

D. W. G. Fengel, Wood: chemistry, ultrastructure, reactions, 2nd ed. Berlin: Walter de Gruyter, 1989.

M. T. Haqiqi et al., “Short Communication: Analysis of the ultimate wood composition of a forest plantation species, Eucalyptus pellita, to estimate its bioelectricity potency,” Biodiversitas, vol. 23, no. 5, pp. 2389–2394, 2022, doi: 10.13057/biodiv/d230516.

M. R. M. Asyraf et al., “Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites,” Int J Biol Macromol, vol. 193, pp. 1587–1599, Dec. 2021, doi: 10.1016/J.IJBIOMAC.2021.10.221.

A. Z. Mohamed et al., “Pulp and Papermaking Potential of Sugar Palm,” in Sugar Palm and Allied Fibre Polymer Composites, SAPC2021, 2021, pp. 52–54. [Online]. Available: https://www.researchgate.net/publication/357186710

J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, “A New Approach to Use Arenga Pinnata as Sustainable Biopolymer: Effects of Plasticizers on Physical Properties,” Procedia Chem, vol. 4, pp. 254–259, 2012, doi: 10.1016/j.proche.2012.06.035.

M. Sarwar Jahan Rowshan Sabina Arjumand Rubaiyat, “Alkaline Pulping and Bleaching of Acacia auriculiformis Grown in Bangladesh,” 2008.

R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, “Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre,” Bioresources, vol. 12, no. 4, pp. 8734–8754, Nov. 2017, doi: 10.15376/biores.12.4.8734-8754.

S. Sujan, M. Kashem, and A. Fakhruddin, “Lignin: a valuable feedstock for biomass pellet,” Bangladesh Journal of Scientific and Industrial Research, vol. 55, no. 1, pp. 83–88, Apr. 2020, doi: 10.3329/bjsir.v55i1.46735.

R. Picchio et al., “Pellet Production from Pruning and Alternative Forest Biomass: A Review of the Most Recent Research Findings,” Jul. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ma16134689.

H. Niu et al., “Population genomic and genome-wide association analysis of lignin content in a global collection of 206 forage sorghum accessions,” Molecular Breeding, vol. 40, no. 8, Aug. 2020, doi: 10.1007/s11032-020-01151-7.

L. Kasirajan, K. Aruchamy, P. P. Thirugnanasambandam, and S. Athiappan, “Molecular Cloning, Characterization, and Expression Analysis of Lignin Genes from Sugarcane Genotypes Varying in Lignin Content,” Appl Biochem Biotechnol, vol. 181, no. 4, pp. 1270–1282, Apr. 2017, doi: 10.1007/s12010-016-2283-5.

M. Xia, O. J. Valverde-Barrantes, V. Suseela, C. B. Blackwood, and N. Tharayil, “Characterizing natural variability of lignin abundance and composition in fine roots across temperate trees: a comparison of analytical methods,” New Phytologist, vol. 236, no. 6, pp. 2358–2373, Dec. 2022, doi: 10.1111/nph.18515.

B. Esteves, U. Sen, and H. Pereira, “Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis,” May 01, 2023, MDPI. doi: 10.3390/en16104226.

A. T. Smit et al., “Biomass Pre-Extraction as a Versatile Strategy to Improve Biorefinery Feedstock Flexibility, Sugar Yields, and Lignin Purity,” ACS Sustain Chem Eng, vol. 10, no. 18, pp. 6012–6022, May 2022, doi: 10.1021/acssuschemeng.2c00838.