Dietary Fiber from Mentawai Taro (Colocasia esculenta var. Mentawai) Ameliorates Diabetic Neuropathy in Alloxan-Induced Mice

Main Article Content

Sutri Wulansari Safril
Putra Santoso
Resti Rahayu

Abstract

Diabetic neuropathy is a severe complication of diabetes mellitus, and conventional synthetic drugs used for its management are often associated with undesirable side effects. This study evaluated the potential of Mentawai taro (Colocasia esculenta var. Mentawai) corm as a functional food for the management of diabetic neuropathy. Adult male mice were divided into five groups: a control group (healthy mice fed a standard diet), a diabetic group (alloxan-induced diabetic mice fed a standard diet), and three diabetic groups fed diets supplemented with 15% Mentawai taro corm whole flour, fiber, or starch. After 28 days of dietary intervention, blood glucose levels, sensory and motor functions, malondialdehyde (MDA) levels, and cerebellar histopathology were evaluated. The results showed that Mentawai taro corm fiber significantly reduced blood glucose levels (59.5% reduction), accompanied by a positive trend toward improved sensory responses (25% increase) and a marked enhancement of motor function (41.6% increase) in diabetic mice. Additionally, fiber supplementation reduced MDA levels in brain tissue (19.3% reduction) and attenuated Purkinje cell degeneration in the cerebellum (27.3% reduction). In contrast, Mentawai taro corm whole flour and starch exerted minimal protective effects, with starch supplementation improving motor function only. Overall, among the various Mentawai taro corm preparations tested, the fiber extract was the most effective in ameliorating symptoms of diabetic neuropathy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dietary Fiber from Mentawai Taro (Colocasia esculenta var. Mentawai) Ameliorates Diabetic Neuropathy in Alloxan-Induced Mice. (2026). Jurnal Biota, 12(1), 70-81. https://doi.org/10.19109/biota.v12i1.32143
Section
Artikel

How to Cite

Dietary Fiber from Mentawai Taro (Colocasia esculenta var. Mentawai) Ameliorates Diabetic Neuropathy in Alloxan-Induced Mice. (2026). Jurnal Biota, 12(1), 70-81. https://doi.org/10.19109/biota.v12i1.32143

References

K. Yang, X. Yang, C. Jin, S. Ding, T. Liu, B. Ma, H. Sun, J. Zhang, Y. Li, “Global burden of type 1 diabetes in adults aged 65 years and older, 1990-2019: population based study,” BMJ, vol. 385, p. e078432, 2024, doi: 10.1136/bmj-2023-078432.

E. L. Feldman, B.C. Callaghan, R. Pop-Busui, D.W. Zochodne, D.E. Wright, D.L. Bennett, V. Brill, J.W. Russell, V. Viswanathan, “Diabetic neuropathy,” Nat Rev Dis Primers, vol. 5, no. 1, p. 41, 2019, doi: 10.1038/s41572-019-0092-1.

S. Dewanjee, S. Das, A. K. Das, N. Bhattacharjee, A. Dihingia, T. K. Dua, J. Kalita, P. Manna, “Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets,” 2018. doi: 10.1016/j.ejphar.2018.06.034.

D. M. Teleanu, A. G. Niculescu, I. I. Lungu, C. I. Radu, O. Vladâcenco, E. Roza, B. Costăchescu, A. M. Grumezescu, R. I. Teleanu, “An Overview of Oxidative Stress, Neuroinflammation and Neurodegenerative Diseases,” 2022. doi: 10.3390/ijms23115938.

R. Galiero, A. Caturano, E. Vetrano, D. Beccia, C. Brin, M. Alfano, J. Di Salvo, R. Epifani, A. Piacevole, G. Tagliaferri, M. Rocco, I. Iadicicco, G. Docimo, L. Rinaldi, C. Sardu, T. Salvatore, R. Marfella, F. C. Sasso, “Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options,” 2023. doi: 10.3390/ijms24043554.

N. D. Reeves, G. Orlando, and S. J. Brown, “Sensory-motor mechanisms increasing falls risk in diabetic peripheral neuropathy,” 2021. doi: 10.3390/medicina57050457.

M. M. Asrar, S. Kumari, B. C. Sekhar, A. Bhansali, and D. Bansal, “Relative efficacy and safety of pharmacotherapeutic interventions for diabetic peripheral neuropathy: A systematic review and bayesian network meta-analysis,” Pain Physician, vol. 24, no. 1, 2021, doi: 10.36076/ppj.2021.24.e1-e14.

S. Derry, R. F. Bell, S. Straube, P. J. Wiffen, D. Aldington, and R. A. Moore, “Pregabalin for neuropathic pain in adults,” Cochrane Database Syst Rev, vol. 1, no. 1, p. CD007076, 2019, doi: 10.1002/14651858.CD007076.pub3.

A. Srinivasan, P. Dutta, D. Bansal, A. Chakrabarti, A. K. Bhansali, and D. Hota, “Efficacy and safety of low-dose naltrexone in painful diabetic neuropathy: A randomized, double-blind, active-control, crossover clinical trial,” J Diabetes, vol. 13, no. 10, 2021, doi: 10.1111/1753-0407.13202.

S. Khasbage, R. Shukla, P. Sharma, and S. Singh, “A randomized control trial of duloxetine and gabapentin in painful diabetic neuropathy,” J Diabetes, vol. 13, no. 7, 2021, doi: 10.1111/1753-0407.13148.

Y. Pan, P. B. Davis, D. C. Kaebler, R. P. Blankfield, and R. Xu, “Cardiovascular risk of gabapentin and pregabalin in patients with diabetic neuropathy,” Cardiovasc Diabetol, vol. 21, no. 1, 2022, doi: 10.1186/s12933-022-01610-9.

Z. Syarif, N. Akhir, and B. Satria, “Identification of plant morphology of taro as a potential source of carbohydrates,” Int J Adv Sci Eng Inf Technol, vol. 7, no. 2, 2017, doi: 10.18517/ijaseit.7.2.1323.

P. R. Pereira, É. B. de A. Mattos, A. C. N. T. F. Corrêa, M. A. Vericimo, and V. M. F. Paschoalin, “Anticancer and immunomodulatory benefits of taro (Colocasia esculenta) corms, an underexploited tuber crop,” 2021. doi: 10.3390/ijms22010265.

P. Santoso, F. Ramadhan Marviano, and R. Rahayu, “Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice,” Journal of Cellular Neuroscience and Oxidative Stress, vol. 16, no. 1, pp. 1173–1182, 2024, doi: 10.37212/jcnos.1470198.

A. M. P. Dewi and E. F. Tethool, “Modification of Starch with Amylosucrase: Methods, Physicochemical Properties and Health Implications,” Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, vol. 9, no. 2, pp. 210–218, 2024, doi: 10.24002/biota.v9i2.9095.

A. Murdiati, H. Wuryastuty, Y. Marsono, and E. Harmayani, “Penurunan Glukosa dan Perubahan Profil Lipida Serum Tikus Sprague- Dawley Hiperglikemia-Hiperkolesterolemia Akibat Asupan Sorbitol-Oleat Poliester (SOPE),” Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 2019, doi: 10.24002/biota.v14i3.2576.

M. Ostovar, A. Akbari, M. H. Anbardar, A. Iraji, M. Salmanpour, S. Hafez Ghoran, M. Heydari, M. Shams, “Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy,” J Integr Med, vol. 18, no. 1, 2020, doi: 10.1016/j.joim.2019.12.002.

D. Bartikofsky, M. J. Hertz, D. S. Bauer, R. Altschuler, W. M. King, and C. E. Stewart, “Balance beam crossing times are slower after noise exposure in rats,” Front Integr Neurosci, vol. 17, 2023, doi: 10.3389/fnint.2023.1196477.

M. A. Babizhayev, I. A. Strokov, V. V. Nosikov, E. L. Savel’yeva, V. F. Sitnikov, Y. E. Yegorov, V. Z. Lankin, “The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients,” Cell Biochem Biophys, vol. 71, no. 3, 2015, doi: 10.1007/s12013-014-0365-y.

K. Luc, A. Schramm-Luc, T. J. Guzik, and T. P. Mikolajczyk, “Oxidative stress and inflammatory markers in prediabetes and diabetes,” 2019. doi: 10.26402/jpp.2019.6.01.

Q. Lin, K. Li, Y. Chen, J. Xie, C. Wu, C. Cui, B. Deng, “Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment,” 2023. doi: 10.1007/s12035-023-03342-7.

G. Sloan, D. Selvarajah, and S. Tesfaye, “Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy,” 2021. doi: 10.1038/s41574-021-00496-z.

P. Santoso, A. S. Simatupang, A. Fajria, R. Rahayu, and R. Jannatan, “Andaliman (Zanthoxylum acanthopodium DC.) fruit ethanolic extract exerts attenuative effect on hyperglycemia, sensory and motoric function’s disorders in alloxan-induced diabetic mice,” J Adv Vet Anim Res, vol. 10, no. 4, pp. 608–619, 2023, doi: 10.5455/javar.2023.j716.

C. Martin-Gallausiaux, L. Marinelli, H. M. Blottière, P. Larraufie, and N. Lapaque, “SCFA: mechanisms and functional importance in the gut,” Proceedings of the Nutrition Society, vol. 80, no. 1, 2021, doi: 10.1017/s0029665120006916.

P. Yu, M. Fang, Y. Li, L. Cai, R. Han, W. Sun, X. Jiang, L. Chen, J. Du, Z. Zhu, “Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review,” Nutrients, vol. 16, no. 17, pp. 1–45, 2024, doi: 10.3390/nu16172838.

P. Santoso, R. Maliza, R. Rahayu, Y. Astrina, F. Syukri, and S. Maharani, “Extracted yam bean (Pachyrhizus erosus (L.) Urb.) fiber counteracts adiposity, insulin resistance, and inflammation while modulating gut microbiota composition in mice fed with a high-fat diet,” Res Pharm Sci, vol. 17, no. 5, 2022, doi: 10.4103/1735-5362.355213.

L. Zhao, F. Zhang, X. Ding, G. Wu, Y. Y. Lam, X. Wang, H. Fu, X. Xue, C. Lu, J. Ma, L. Yu, C. Xu, Z. Ren, Y. Xu, S. Xu, H. Shen, X. Zhu, Y. Shi, Q. Shen, W. Dong, R. Liu, Y. Ling, Y. Zeng, X. Wang, Q. Zhang, J. Wang, L. Wang, Y. Wu, B. Zeng, H. Wei, M. Zhang, Y. Peng, C. Zhang, “Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes,” Science (1979), vol. 359, no. 6380, 2018, doi: 10.1126/science.aao5774.

M. Van de Wouw, M. Boehme, J. M. Lyte, N. Wiley, C. Strain, O. O’Sullivan, G. Clarke, C. Stanton, T. G. Dinan, J. F. Cryan, “Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations,” Journal of Physiology, vol. 596, no. 20, 2018, doi: 10.1113/JP276431.

W. Huang, H. L. Guo, X. Deng, T. T. Zhu, J. F. Xiong, Y. H. Xu, Y. Xu., “Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide,” Experimental and Clinical Endocrinology and Diabetes, vol. 125, no. 2, 2017, doi: 10.1055/s-0042-121493.

N. H. T. Pham, M. V. Joglekar, W. K. M. Wong, N. T. Nassif, A. M. Simpson, and A. A. Hardikar, “Short-chain fatty acids and insulin sensitivity: A systematic review and meta-Analysis,” 2024. doi: 10.1093/nutrit/nuad042.

L. L. Yang, V. Millischer, S. Rodin, D. F. MacFabe, J. C. Villaescusa, and C. Lavebratt, “Enteric short-chain fatty acids promote proliferation of human neural progenitor cells,” J Neurochem, vol. 154, no. 6, 2020, doi: 10.1111/jnc.14928.