Comparative Analysis of Naïve Bayes Classifier and Support Vector Machine for Multilingual Sentiment Analysis: Insights from Genshin Impact User Reviews

Main Article Content

Rachell Aprinastya
Muhammad Jazman
Syaifullah Syaifullah
Medyantiwi Rahmawita
Syafril Siregar
Eki Saputra

Abstract

This study evaluates the performance of Support Vector Machine (SVM) and Naïve Bayes Classifier (NBC) algorithms in analyzing user sentiments regarding the popular online game Genshin Impact. The dataset comprises reviews sourced from the Google Play Store and App Store in both Indonesian and English, reflecting linguistic diversity. Preprocessing techniques such as tokenization, stemming, and Term Frequency-Inverse Document Frequency (TF-IDF) were employed to enhance data quality. Sentiments were classified as positive, neutral, or negative using TextBlob-assisted processes. Results demonstrate that NBC outperformed SVM across all metrics, with an average accuracy of 71% compared to 63%. Notably, sentiment analysis on English datasets consistently achieved higher accuracy than on Indonesian datasets, emphasizing the challenges posed by the linguistic complexity of Indonesian. This research underscores the critical role of language-specific adaptations in improving machine learning algorithms for multilingual sentiment analysis. The findings provide actionable insights for optimizing user engagement through enhanced game feedback mechanisms.

Article Details

How to Cite
Aprinastya, R., Jazman, M. ., Syaifullah, S., Rahmawita, M., Siregar, S., & Saputra, E. (2024). Comparative Analysis of Naïve Bayes Classifier and Support Vector Machine for Multilingual Sentiment Analysis: Insights from Genshin Impact User Reviews. JUSIFO (Jurnal Sistem Informasi), 10(2), 117-126. https://doi.org/10.19109/jusifo.v10i2.24876
Section
Articles

How to Cite

Aprinastya, R., Jazman, M. ., Syaifullah, S., Rahmawita, M., Siregar, S., & Saputra, E. (2024). Comparative Analysis of Naïve Bayes Classifier and Support Vector Machine for Multilingual Sentiment Analysis: Insights from Genshin Impact User Reviews. JUSIFO (Jurnal Sistem Informasi), 10(2), 117-126. https://doi.org/10.19109/jusifo.v10i2.24876

References

Albaghajati, A., & Ahmed, M. (2023). Video game automated testing approaches: an assessment framework. IEEE Transactions on Games, 15(1), 81–94. https://doi.org/10.1109/TG.2020.3032796

Azzahra, Z. F., Andreswari, R., & Hasibuan, M. A. (2020). Sentiment analysis website of online hotel booking application reviews using the naive bayes algorithm. Proceedings - 2020 6th International Conference on Science and Technology, ICST 2020. https://doi.org/10.1109/ICST50505.2020.9732790

Bekker, J., & Davis, J. (2020). Learning from positive and unlabeled data: a survey. Machine Learning, 109(4), 719–760. https://doi.org/10.1007/S10994-020-05877-5/FIGURES/6

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/J.KNOSYS.2021.107134

Chakraborty, S., Krishna, R., Ding, Y., & Ray, B. (2020). Deep learning based vulnerability detection: are we there yet? IEEE Transactions on Software Engineering, 48(9), 3280–3296. https://doi.org/10.1109/TSE.2021.3087402

Cole, E., Aodha, O. Mac, Lorieul, T., Perona, P., Morris, D., & Jojic, N. (2021). Multi-label learning from single positive labels. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 933–942. https://doi.org/10.1109/CVPR46437.2021.00099

Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment analysis based on deep learning: a comparative study. Electronics 2020, Vol. 9, Page 483, 9(3), 483. https://doi.org/10.3390/ELECTRONICS9030483

Dey, S., Wasif, S., Tonmoy, D. S., Sultana, S., Sarkar, J., & Dey, M. (2020). A comparative study of support vector machine and naive bayes classifier for sentiment analysis on amazon product reviews. 2020 International Conference on Contemporary Computing and Applications, IC3A 2020, 217–220. https://doi.org/10.1109/IC3A48958.2020.233300

Dhar, A., Mukherjee, H., Dash, N. S., & Roy, K. (2021). Text categorization: past and present. Artificial Intelligence Review, 54(4), 3007–3054. https://doi.org/10.1007/S10462-020-09919-1/METRICS

Dronne, N. M. (2023). From monolingual to bilingual: educator language ideologies and a new dual language program [Dissertation]. Fordham University.

Fauziah, Y., Yuwono, B., & Aribowo, A. S. (2021). Lexicon based sentiment analysis in indonesia languages: a systematic literature review. RSF Conference Series: Engineering and Technology, 1(1), 363–367. https://doi.org/10.31098/CSET.V1I1.397

Golpour, P., Ghayour-Mobarhan, M., Saki, A., Esmaily, H., Taghipour, A., Tajfard, M., Ghazizadeh, H., Moohebati, M., & Ferns, G. A. (2020). Comparison of support vector machine, naïve bayes and logistic regression for assessing the necessity for coronary angiography. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 6449, 17(18), 6449. https://doi.org/10.3390/IJERPH17186449

Han, H., Jeong, H., Jo, S. J., Son, H. J., & Yim, H. W. (2020). Relationship between the experience of online game genre and high risk of internet gaming disorder in korean adolescents. Epidemiology and Health, 42, e2020016. https://doi.org/10.4178/EPIH.E2020016

Juandri, H. J., Hasmawati, H., & Bunyamin, B. (2024). Aspect-level sentiment analysis on gopay app reviews using multilayer perceptron and word embeddings. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/KINETIK.V9I4.2041

Kathunia, A., Kaif, M., Arora, N., & Narotam, N. (2024). Sentiment analysis across languages: evaluation before and after machine translation to english. https://doi.org/10.48550/arXiv.2405.02887

Kurnianingrum, D., Wijaya, A., Jumri, I. A. Bin, Savitri, M. A., Tanuar, E., & Karmagatri, M. (2023). Analyzing customer sentiments in genshin impact: a business intelligence perspective on player perception. 3rd IEEE International Conference on ICT in Business Industry and Government, ICTBIG 2023. https://doi.org/10.1109/ICTBIG59752.2023.10456098

Ma, T. M., Yamamori, K., & Thida, A. (2020). A comparative approach to naïve bayes classifier and support vector machine for email spam classification. 2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020, 324–326. https://doi.org/10.1109/GCCE50665.2020.9291921

Mitra, A., & Mohanty, S. (2021). Sentiment analysis using machine learning approaches. Emerging Technologies in Data Mining and Information Security, 63–68. https://doi.org/10.1007/978-981-33-4367-2_7

Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 1–19. https://doi.org/10.1007/S13278-021-00776-6/TABLES/4

Putri, D. A., Kristiyanti, D. A., Indrayuni, E., Nurhadi, A., & Hadinata, D. R. (2020). Comparison of naive bayes algorithm and support vector machine using pso feature selection for sentiment analysis on e-wallet review. Journal of Physics: Conference Series, 1641(1), 012085. https://doi.org/10.1088/1742-6596/1641/1/012085

Safrudin, M., Martanto, M., & Hayati, U. (2024). Perbandingan kinerja naïve bayes dan support vector machine untuk klasifikasi sentimen ulasan game genshin impact. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3182–3188. https://doi.org/10.36040/JATI.V8I3.8415

Sharma, H. D., & Goyal, P. (2023). An analysis of sentiment: methods, applications, and challenges. Engineering Proceedings 2023, Vol. 59, Page 68, 59(1), 68. https://doi.org/10.3390/ENGPROC2023059068

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review 2022 55:7, 55(7), 5731–5780. https://doi.org/10.1007/S10462-022-10144-1

Yakan, S. A. (2022). Analysis of development of artificial intelligence in the game industry. International Journal of Cyber and IT Service Management, 2(2), 111–116. https://doi.org/10.34306/IJCITSM.V2I2.100