Pendekatan Machine Learning: Analisis Sentimen Masyarakat Terhadap Kendaraan Listrik Pada Sosial Media X

Main Article Content

Gathot Hanyokro Kusuma
Inggih Permana
Febi Nur Salisah
M. Afdal
Muhammad Jazman
Arif Marsal

Abstract

Environmental issues and the depletion of fossil fuels continue to escalate as the number of fossil fuel-based vehicle users increases in Indonesia. Electric vehicles emerge as one of the potential alternative solutions to address current environmental challenges, given their eco-friendly nature and lack of pollution emissions. Sentiment analysis is conducted to understand public responses, both supportive and opposing, towards electric vehicles. This research aims to analyze the sentiment of X-social media users regarding electric vehicles using machine learning techniques. The research stages include data collection, data selection, preprocessing, and classification using Naïve Bayes Classifier (NBC), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) algorithms. The test results show that on a balanced dataset using ROS, SVM performs the best with accuracy = 68.7%, precision = 77.9%, and recall = 68.4%. Meanwhile, NBC yields an accuracy of 60.3%, precision of 61.3%, and recall of 60.3%, while KNN has an accuracy of 53.9%, precision of 54%, and recall of 53.9%.

Article Details

How to Cite
Kusuma, G. H., Permana, I., Salisah, F. N., Afdal, M., Jazman, M., & Marsal, A. (2023). Pendekatan Machine Learning: Analisis Sentimen Masyarakat Terhadap Kendaraan Listrik Pada Sosial Media X. JUSIFO (Jurnal Sistem Informasi), 9(2), 65-76. https://doi.org/10.19109/jusifo.v9i2.21354
Section
Articles

How to Cite

Kusuma, G. H., Permana, I., Salisah, F. N., Afdal, M., Jazman, M., & Marsal, A. (2023). Pendekatan Machine Learning: Analisis Sentimen Masyarakat Terhadap Kendaraan Listrik Pada Sosial Media X. JUSIFO (Jurnal Sistem Informasi), 9(2), 65-76. https://doi.org/10.19109/jusifo.v9i2.21354

References

Agustian, A., Tukino, T., & Nurapriani, F. (2022). Sentiment analysis, text mining application of sentiment analysis and naive bayes to electric vehicle usage opinions on twitter. Jurnal Tika, 7(3), 243–249. https://doi.org/10.51179/TIKA.V7I3.1550

Alfarizi, S., & Fitriani, E. (2023). Analisis sentimen kendaraan listrik menggunakan algoritma naive bayes dengan seleksi fitur information gain dan particle swarm optimization. Indonesian Journal on Software Engineering (IJSE), 9(1), 19–27. https://ejournal.bsi.ac.id/ejurnal/index.php/ijse/article/view/15671

Aryanti, R., Misriati, T., & Hidayat, R. (2023). Klasifikasi risiko kesehatan ibu hamil menggunakan random oversampling untuk mengatasi ketidakseimbangan data. Klik: Kajian Ilmiah Informatika Dan Komputer, 3(5), 409–416. https://djournals.com/klik/article/view/728

Badan Pusat Statistik. (2022). Perkembangan jumlah kendaraan bermotor di indonesia. Bps.Go.Id. https://www.bps.go.id/id/statistics-table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html

Christidis, P., & Focas, C. (2019). Factors affecting the uptake of hybrid and electric vehicles in the european union. Energies, 12(18), 3414. https://doi.org/10.3390/EN12183414

Efendi, A. (2020). Rancang bangun mobil listrik sula politeknik negeri subang. Jurnal Pendidikan Teknologi Dan Kejuruan, 17(1), 75–84. https://doi.org/10.23887/JPTK-UNDIKSHA.V17I1.23057

Erfina, A., & Lestari, R. A. (2023). Sentiment analysis of electric vehicles using the naïve bayes algorithm. Sistemasi: Jurnal Sistem Informasi, 12(1), 178–185. https://doi.org/10.32520/STMSI.V12I1.2417

Fitriani, R. D., Yasin, H., & Tarno, T. (2021). Penanganan klasifikasi kelas data tidak seimbang dengan random oversampling pada naive bayes (studi kasus: status peserta kb iud di kabupaten kendal). Jurnal Gaussian, 10(1), 11–20. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/30243

Fitrianto, H. (2023). Analisis penggunaan kendaraan listrik sebagai upaya penurunan emisi lingkungan case study kendaraan listrik di provinsi sumatera utara. Cakrawala Repositori IMWI, 6(2), 1056–1067. https://doi.org/10.52851/CAKRAWALA.V6I2.302

Ghaniyyu, F. F., & Husnita, N. (2021). Upaya pengendalian perubahan iklim melalui pembatasan kendaraan berbahan bakar minyak di indonesia berdasarkan paris agreement. Morality: Jurnal Ilmu Hukum, 7(1), 110–129. https://doi.org/10.52947/MORALITY.V7I1.196

Handayani, A., & Zufria, I. (2023). Analisis sentimen terhadap bakal capres ri 2024 di twitter menggunakan algoritma svm. Journal of Information System Research (JOSH), 5(1), 53–63. https://doi.org/10.47065/JOSH.V5I1.4379

Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers. https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Muchtari, F. A., Putra, A. M. N., & Bandri, S. (2023). Analisis pengaruh perubahan arus terhadap waktu dan temperatur pengisian baterai kendaraan listrik. Ensiklopedia of Journal, 5(3), 115–119. https://jurnal.ensiklopediaku.org/ojs-2.4.8-3/index.php/ensiklopedia/article/view/1629

Mustofa, A., & Novita, R. (2022). Klasifikasi sentimen masyarakat terhadap pemberlakuan pembatasan kegiatan masyarakat menggunakan text mining pada twitter. Building of Informatics, Technology and Science (BITS), 4(1), 200−208-200−208. https://doi.org/10.47065/BITS.V4I1.1628

Noviana, R., & Rasal, I. (2023). Penerapan algoritma naive bayes dan svm untuk analisis sentimen boy band bts pada media sosial twitter. Jurnal Teknik Dan Science, 2(2), 51–60. https://doi.org/10.56127/JTS.V2I2.791

Nurmalasari, D., Hermanto, T. I., & Nugroho, I. M. (2023). Perbandingan algoritma svm, knn dan nbc terhadap analisis sentimen aplikasi loan service. Jurnal Media Informatika Budidarma, 7(3), 1521–1530. https://ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/6427

Pambudi, D. I., & Sulastri, S. (2023). Perbandingan naïve bayes dan knn dalam klasifikasi tweet bbm subsidi. Elkom : Jurnal Elektronika Dan Komputer, 16(1), 35–44. https://journal.stekom.ac.id/index.php/elkom/article/view/961

Pambudi, I., & Juwono, V. (2023). Electric vehicles in indonesia: public policy, impact, and challenges. Asian Journal of Social and Humanities, 2(2), 347–360. https://doi.org/10.59888/AJOSH.V2I2.173

Pratama, Y., Murdiansyah, D. T., & Lhaksmana, K. M. (2023). Analisis sentimen kendaraan listrik pada media sosial twitter menggunakan algoritma logistic regression dan principal component analysis. Jurnal Media Informatika Budidarma, 7(1), 529–535. https://ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/5575

Purnajaya, A. R., & Hanggara, F. D. (2021). Perbandingan performa teknik sampling data untuk klasifikasi pasien terinfeksi covid-19 menggunakan rontgen dada. Journal of Applied Informatics and Computing (JAIC), 5(1), 37–42. https://pdfs.semanticscholar.org/6667/688f78652f9f0e9ff993d07f03cc195bfa16.pdf

Rahayu, A. S., Fauzi, A., & Rahmat, R. (2022). Komparasi algoritma naïve bayes dan support vector machine (svm) pada analisis sentimen spotify. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 349–354. https://doi.org/10.30865/JSON.V4I2.5398

Saddam, M. A., Dewantara, E. K., & Solichin, A. (2023). Sentiment analysis of flood disaster management in jakarta on twitter using support vector machines. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 7(1), 470–479. https://doi.org/10.33395/SINKRON.V8I1.12063

Sidik, A. D., & Ansawarman, A. (2022). Prediksi jumlah kendaraan bermotor menggunakan machine learning. Formosa Journal of Multidisciplinary Research, 1(3), 559–568. https://doi.org/10.55927/FJMR.V1I3.745

Subiantoro, H., Elok, A., & Maharani, P. (2023). Analysis of presidential regulation no. 55/2019 related to electric vehicle program in the context of realizing transportation environmentally friendly. International Journal of Business, Economics and Law, 30(2). http://sdgs.bappenas.go.id/tujuan-7/

Wang, H., & Wang, Y. (2020). A review of online product reviews. Journal of Service Science and Management, 13(1), 88–96. https://doi.org/10.4236/JSSM.2020.131006

Wayan Ernawati, N., Nyoman Satya Kumara, I., Setiawan, W., Raya Kampus Unud Jimbaran, J., Kuta Sel, K., & Badung, K. (2023). Perbandingan metode klasifikasi support vector machine dan naïve bayes pada analisis sentimen kendaraan listrik. Jurnal SPEKTRUM, 10(3), 106–114. https://doi.org/10.24843/SPEKTRUM.2023.V10.I03.P12