Stemonitis pallida; Matchstick Myxomycetes from West Java, Indonesia

Main Article Content

Rudy Hermawan
Mega Putri Amelya
Septyani Amini
Ivan Permana Putra

Abstract

Slime molds, Myxomycetes, or Mycetozoa are Protozoan that produces fruiting body similar to micro-fungi. The fruiting bodies mostly are tiny goblets, globes, plumes, or other shapes that are difficult to characterize. In IPB University, many myxomycetes were found on the rotten wood. One of them is the Stemonitis specimen Bogor2020. The shape has an intricate form as a matchstick shape. The Stemonitis specimen Bogor2020 has a blackish stalk with 2-2.5 mm in height. The spore is finely globose with 6.7x6.7 µm in diameter, and with baculae ornamentation. The identification used morphological study using Numerical Taxonomy System (NTSys) software. Six species from Stemonitis (Stemonitis ferruginea, S. flavogenita, S. pallida, S. herbatica, S. splendens, and S. webberi) were used as Stemonitis references for SAHN cladogram. Ceratiomyxa arbuscula which is the same as the Myxomycetes group was chosen as an outgroup. The 30 biner data were used for the SAHN cladogram analysis. The SAHN cladogram shows that Stemonitis specimen Bogor2020 is classified as Stemonitis pallida. The main characters that strongly group them are spore surface, spore size, stalk color, and stalk size. Modern taxonomy in the Stemonitis genus is heavily reliant on morphological characters identification.

Downloads

Download data is not yet available.

Article Details

How to Cite
Stemonitis pallida; Matchstick Myxomycetes from West Java, Indonesia. (2022). Jurnal Biota, 8(2), 71-77. https://doi.org/10.19109/Biota.v8i2.11534
Section
Artikel

How to Cite

Stemonitis pallida; Matchstick Myxomycetes from West Java, Indonesia. (2022). Jurnal Biota, 8(2), 71-77. https://doi.org/10.19109/Biota.v8i2.11534

References

Baba, H., Kolukirik, M., & Zumre, M. (2015). Differentiation of Some Myxomycetes Species by ITS Sequences. Turkish Journal of Botany, 39, 377–382. https://doi.org/10.3906/bot-1405-12
Estrada-Torres, A., de Basanta, D. W., & Lado, C. (2013). Biogeographic patterns of the myxomycete biota of the Americas using a parsimony analysis of endemicity. Fungal Diversity, 59, 159–177. https://doi.org/10.1007/s13225-012-0209-2
Hermawan, R., & Amalia, T. R. (2022). Ceratiomyxa arbuscula: a white tubular Myxomycetes in West Java. Biotropika, 10(1), 62–66. https://doi.org/10.21776/ub.biotropika.2022.010.01.08
Hermawan, R., Fusvita, L., Nugraha, N. H., & Amelya, M. P. (2021). Morphological Characteristic and Phenetic Relationship of Lysurus periphragmoides Collected from West Java. Jurnal Biodjati, 6(1), 102–110. https://doi.org/10.15575/biodjati.v6i1.10724
Hermawan, R., & Maulana, I. (2020). Sphaerobolus stellatus: Cannonball Mushroom from West Java. Jurnal Mikologi Indonesia, 4(2), 218–222. https://doi.org/10.46638/jmi.v4i2.86
Hermawan, R., & Sari, A. A. P. (2021). Lentinus sajor-caju on the Bases of Morphological Data. BIOTIKA Jurnal Ilmiah Biologi, 19(1), 75–79. https://doi.org/10.24198/biotica.v19i1.32788
Index Fungorum. (2022). Stemonitis. http://www.indexfungorum.org/names/Names.asp
Keller, H. W. (2012). Myxomycete History and Taxonomy: Highlights from the Past, Present, and Future. Mycotaxon, 122, 369–387. https://doi.org/10.5248/122.369
Keller, H. W., & Everhart, S. E. (2010). Importance of Myxomycetes in Biological Research and Teaching. FUNGI, 3(1), 13–27.
Keller, H. W., Everhart, S. E., & Kilgore, C. M. (2017). The Myxomycetes: Introduction, Basic Biology, Life Cycles, Genetics, and Reproduction. In Myxomycetes: biology, systematics, biogeography and ecology’ (Eds Stephe, pp. 1–40). Academic Press.
Lee, J. H., Kim, D.-R., & Kwak, Y.-S. (2014). First Report of Stemonitis splendens Rostaf Causing Bark Decay of Oak Logs Used for Shiitake Cultivation in Korea. Mycobiology, 42(3), 279–281. https://doi.org/10.5941/MYCO.2014.42.3.279
Loganathan, P. (1998). Production of DL-DOPA from Acellular Slime-Mould Stemonitis herbatica. Bioprocess Eng., 18, 307–308.
Martin, G. W., & Alexopoulos, C. J. (1969). The Myxomycetes. University of Iowa Press.
Martin, G. W., Alexopoulos, C. J., & Farr, M. L. (1983). The genera of Myxomycetes. University of Iowa Press.
Moreno, G., Castillo, A., & Thus, H. (2020). Critical Revision of Stemonitis and Symphytocarpus (Myxomycetes) at The Natural History Museum London (BM). Phytotaxa, 458(4), 257–280. https://doi.org/10.11646/phytotaxa.458.4.3
Mycobank. (2022). Stemonitis. https://www.mycobank.org/page/Name details page/name/Stemonitis
Ramdhan, M., Arifin, H. S., Suharnoto, Y., & Tarigan, S. D. (2018). Towards water sensitive city: lesson learned from Bogor flood hazard in 2017. E3S Web of Conferences, 31, 09012. https://doi.org/10.1051/e3sconf/20183109012
Ratnaningtyas, N. I., Hernayanti, Ekowati, N., Sukmawati, D., & Widianti, H. (2019). Chicken Drumstick Mushroom (Coprinus comatus) Ethanol Extract Exerts A Hypoglycaemic Effect in The Rattus Norvegicus Model of Diabetes. Biocatalysis and Agricultural Biotechnology, 19. https://doi.org/10.1016/j.bcab.2019.101050
Reynolds, D. R., & Alexopoulos, C. J. (1971). Southeast Asian Myxomycetes. I. Thailand and Burma. Pacific Science, 25, 33–38.
Rickshaw. (2022). Discover the besttime to visit Indonesi. www.rickshawtravel.co.uk/travel-guides/indonesia/best-time-to-visit/#:~:text=With a tropical climate%2C Indonesia,travelling to some islands tricky
Rohlf, F. J. (1998). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System Version 2.0 User Guide. Applied Biostatistics Inc.
Sevindik, M., & Akgul, H. (2019). Fruiting Bodies Structures of Myxomycetes. Journal of Bacteriology & Mycology, 7(6), 144–148. https://doi.org/10.15406/jbmoa.2019.07.00260
Stephenson, S. L. (2021). Secretive Slime Moulds. Myxomycetes of Australia. CSIRO Publishing.
Stephenson, S. L., & Rojas, C. (2017). Myxomycetes: Biology, Systematics, Biogeography and Ecology. Elsevier Science Publishing Co Inc.
Stephenson, S. L., & Stempen, H. (1994). Myxomycetes A Handbook of Slime Molds. Timber Press.
Tesmer, J., & Schnitter, M. (2007). Sedimentation Velocity of Myxomycete Spores. Mycological Progress, 6, 229–234. https://doi.org/10.1007/s11557-007-0539