Unraveling The Impact of Feed Protein Content on Catfish (Clarias sp.) Growth, Survival, Meat Quality and Gastrointestinal Histology

Main Article Content

Nur Indah Septriani
Nata Dwi Annisa Nizma
Pradnya Paramita

Abstract

Catfish is a highly favored source of protein in Indonesia. Catfish farming can be carried out using various types of feed and methods. This research aims to determine the effect of two types of fish feed with high (24%) and low (4%) protein content on several aspects of catfish cultivated using the pond/bucket culture method. The methods include catfish maintenance, physicochemical measurement, morphometric measurements, survival rate measurements, proximate testing, and histological preparations of catfish intestines and stomach. The results show that the TDS and pH values in the high-protein feed are higher than in the low-protein feed, while the temperature fluctuates. At the end of the observation, there is a significant difference in the morphometry of catfish fed with high-protein feed, where the body weight, head width, and body length are higher. The difference in body weight of catfish fed with high-protein feed is significantly higher (119.58±16.72 g) compared to those fed with low-protein feed (52.20±4.80 g). The average number of surviving catfish fed with high-protein feed is lower (27.60±8.23 fish) compared to the other group (44.00±2.55 fish). Proximate testing indicates that catfish meat with high-protein feed also has higher protein, fat, and carbohydrate content.  Histological analysis shows that catfish with high-protein feed have longer villi and  higher number of goblet cells, while the length of the gastric pits is lower. This research demonstrates that high-protein feed has an impact on fish quality, while ensuring water quality to reduce catfish mortality rates in catfish pond culture.

Downloads

Download data is not yet available.

Article Details

How to Cite
Unraveling The Impact of Feed Protein Content on Catfish (Clarias sp.) Growth, Survival, Meat Quality and Gastrointestinal Histology. (2024). Jurnal Biota, 10(2), 89-102. https://doi.org/10.19109/biota.v10i2.19715
Section
Artikel

How to Cite

Unraveling The Impact of Feed Protein Content on Catfish (Clarias sp.) Growth, Survival, Meat Quality and Gastrointestinal Histology. (2024). Jurnal Biota, 10(2), 89-102. https://doi.org/10.19109/biota.v10i2.19715

References

M. A. Suprayudi and N. B. P. Utomo, “Kinerja pertumbuhan dan status kesehatan ikan lele, Clarias gariepinus (Burchell 1822) yang diberi tambahan selenium organik kadar berbeda,” J. Iktiologi Indones., vol. 16, no. 3, pp. 289–297, 2016, doi: 10.32491/jii.v16i3.28.

I. Muntafiah, “Analisis pakan pada budidaya ikan lele (Clarias Sp.) di Mranggen,” JRST (Jurnal Ris. Sains dan Teknol., vol. 4, no. 1, pp. 35–39, 2020, doi: 10.30595/jrst.v4i1.6129.

D. N. Anggraeni and R. Rahmiati, “Pemanfaatan Ampas Tahu Sebagai Pakan Ikan Lele (Clariasbatrachus) Organik,” Biog. J. Ilm. Biol., vol. 4, no. 1, pp. 53–57, 2016, doi: 10.36257/apts.v5i1.4337.

A. Irfandi et al., “31. Histological of Tractus Digestivus of Domestical Catfish (Clarias batracus),” J. Med. Vet., vol. 13, no. 2, 2019, doi: 10.21157/j.med.vet..v13i2.3535.

M. N. Sari, “11. Efek Penambahan Ampas Kedelai Yang Difermentasi Dengan Aspergillus niger Dalam Ransum Terhadap Histomorfometri Vili Usus Halus Ayam Kampung (Gallus domesticus) The Effect of Aspergillus niger - Fermented Soybean Residue Supplementation in Ration the Histomophometry of Local Chicken (Gallus domesticus) Small Intestine,” J. Med. Vet., vol. 10, no. 2, 2016, doi: 10.21157/j.med.vet..v10i2.4632.

U. Cahyadi, D. Jusadi, I. A. Fauzi, and A. Sunarma, “Peran Penambahan Enzim pada Pakan Buatan terhadap Pertumbuhan Larva Ikan lele Afrika Clarias gariepinus Burchell, 1822,” J. Ikhtiologi Indones., vol. 20, no. 2, pp. 155–169, 2020, doi: 123456789/101661.

X. Qiyou, Z. Qing, X. Hong, W. Changan, and S. Dajiang, “Dietary glutamine supplementation improves growth performance and intestinal digestion/absorption ability in young hybrid sturgeon (Acipenser schrenckii♀× Huso dauricus♂),” J. Appl. Ichthyol., vol. 27, no. 2, pp. 721–726, 2011, doi: 10.1111/j.1439-0426.2011.01710.x.

E. S. Prihatini and Y. Febrianto, “Pemberian Persentase Protein Yang Berbeda Dalam Pakan Untuk Kelangsungan Hidup dan Pertumbuhan Ikan Lele Sangkuriang,” J. TECHNO-FISH, vol. 1, pp. 24–34, 2021, doi: 10.25139/tf.v5i1.3217.

I. N. Mir et al., “Optimal dietary lipid and protein level for growth and survival of catfish Clarias magur larvae,” Aquaculture, vol. 520, p. 734678, 2020, doi: 10.1016/j.aquaculture.2019.734678.

M. Mojiono, N. Qomariah, and F. Riana, “Diseminasi Teknik Budikdamber Lele untuk Produksi Pangan Skala Rumah Tangga Selama Pandemi Covid-19,” J. Pengabdi. Pada Masy., vol. 5, no. 4, pp. 917–926, 2020, doi. 10.30653/002.202054.594.

C. Layton, J. D. Bancroft, and S. K. Suvarna, “Fixation of tissues,” Bancroft’s Theory Pract. Histol. Tech. 8th ed.; Suvarna, SK, Layton, C., Bancroft, JD, Eds, pp. 40–63, 2018.

D. Wolfe, Tissue processing, Eighth Edition. Elsevier, 2018, doi: 10.1016/B978-0-7020-6864-5.00006-2.

R. Zamora, H. Harmadi, and W. Wildian, “Perancangan alat ukur TDS (Total Dissolved Solid) air dengan sensor konduktivitas secara real time,” J. Sainstek IAIN Batusangkar, vol. 7, no. 1, pp. 11–15, 2016, doi: 10.31958/js.v7i1.120.

E. Kustiyaningsih and R. Irawanto, “Pengukuran total dissolved solid (tds) dalam fitoremediasi deterjen dengan tumbuhan Sagittaria lancifolia,” J. Tanah dan Sumberd. Lahan, vol. 7, no. 1, pp. 143–148, 2020, doi: 10.21776/ub.jtsl.2020.007.1.18.

B. Sulistiyarto, “Pemanfaatan limbah budidaya ikan lele dumbo sebagai sumber bahan organik untuk produksi bloodworm (Larva Chironomidae).,” J. ILMU HEWANI Trop. (JOURNAL Trop. Anim. Sci., vol. 5, no. 1, pp. 36–40, 2016, doi: JIHT/article/view/85.

N. Ullah et al., “Effect of different protein based feed on the growth of mahseer,” Brazilian J. Biol., vol. 82, p. e243670, 2021, doi: 10.1590/1519-6984.243670.

D. F. Gomez Isaza, R. L. Cramp, and C. E. Franklin, “Exposure to nitrate increases susceptibility to hypoxia in fish,” Physiol. Biochem. Zool., vol. 94, no. 2, pp. 124–142, 2021, doi: 10.1086/713252.

L. A. Shadieva, E. M. Romanova, V. N. Lyubomirova, V. V Romanov, and T. M. Shlenkina, “Effect of feed composition on the nutritional value of meat of African catfish,” in BIO Web of Conferences, 2020, vol. 27, p. 134, doi: 10.1051/bioconf/20202700134.

M. A. Aslaksen et al., “Screening of nutrient digestibilities and intestinal pathologies in Atlantic salmon, Salmo salar, fed diets with legumes, oilseeds, or cereals,” Aquaculture, vol. 272, no. 1–4, pp. 541–555, 2007, doi:10.1016/j.aquaculture.2007.07.222.

T. Şahin and M. Gürkan, “Effects of dietary protein level on growth, histology and digestive enzyme activities of ornamental fish Ancistrus cirrhosus,” Aquac. Res., vol. 53, no. 18, pp. 6700–6710, 2022, doi: 10.1111/are.16138.

S. Henish, “Effect of Different Dietary Protein Levels on the Rabbitfish (Siganus rivulatus) Performance and Health Status Under Biofloc System Condition During the Nursery Phase,” Egypt. J. Aquat. Biol. Fish., vol. 27, no. 1, pp. 605–618, 2023, doi: 10.21608/ejabf.2023.290345.

O. T. Özel, E. Çakmak, İ. Coşkun, and E. C. Çankırılıgil, “Evaluation of growth performance and intestine villi morphology of black sea trout (Salmo labrax Pallas, 1814) fed with different protein levels containing diets,” 2018, doi.10.12714/egejfas.2018.35.2.04.

A. Leduc et al., “Dietary aquaculture by-product hydrolysates: impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets,” BMC Genomics, vol. 19, pp. 1–20, 2018, doi: /10.1186/s12864-018-4780-0.

M. S. Gilbert, N. Ijssennagger, A. K. Kies, and S. W. C. van Mil, “Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry,” Am. J. Physiol. Liver Physiol., 2018, doi: 10.1152/ajpgi.00319.2017.

A. Lan et al., “High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon,” J. Nutr. Biochem., vol. 26, no. 1, pp. 91–98, 2015, doi: 10.1016/j.jnutbio.2014.09.007.

Most read articles by the same author(s)