Potential of Bacteriophages as Non-Alcoholic Antiseptic Hand Sanitizer

Main Article Content

Riri Novita Sunarti
Ike Apriani
Septa Ardiyan Muka Rohma
Adam Ramat hidayat
Frety Abelia Azzumar
Salem Ebraiek

Abstract

Bacteriophages, or phages, are viruses that can infect and replicate within bacterial cells, such as Escherichia coli. Phages demonstrate a strong ability to lyse host bacteria and exhibit high survivability, making them a promising innovation for use in non-alcoholic antiseptic products, such as hand sanitizer sprays and bacteriophage gels. This study aims to evaluate the effectiveness of bacteriophage-based hand sanitizer sprays and gels in reducing E. coli growth and total microbial colonies on palms, compared to commercial alcohol-based hand sanitizers. The method used in this study is a descriptive quantitative approach using an experimental method, specifically the Hand Sanitizer Spray and Bacteriophage Gel Test as Non-Alcohol Antiseptics. The average total bacterial colonies on male palms for the control treatment, phage gel sanitizer and commercial gel hand sanitizer were 1.95 x 104 CFU/mL; 1.15 x 103 CFU/mL; 2.55 x 103 CFU/mL, respectively,  while on female palms, the values were 2.35 x 104 CFU/mL; 3.05 x 103 CFU/mL; 1.65 x 103 CFU/mL. The average total bacterial colonies on male palms for control treatment, phage sanitizer spray and commercial sanitizer spray were 1.30 x 105 CFU/mL; 2.05 x 103 CFU/mL; 9, 04 x 104 CFU/mL, respectively, while on female palms, the value was 1.58 x 105 CFU/mL; 8.36 x 103 CFU/mL; 8.79 x 104 CFU/mL. The results demonstrated that both bacteriophage hand sanitizer gel and spray significantly reduce bacterial colonies on palms, with phage-based hand sanitizer showing greater efficacy than commercial alcohol-based hand sanitizer.

Downloads

Download data is not yet available.

Article Details

How to Cite
Potential of Bacteriophages as Non-Alcoholic Antiseptic Hand Sanitizer. (2025). Jurnal Biota, 11(2), 181-195. https://doi.org/10.19109/biota.v11i2.25232
Section
Artikel

How to Cite

Potential of Bacteriophages as Non-Alcoholic Antiseptic Hand Sanitizer. (2025). Jurnal Biota, 11(2), 181-195. https://doi.org/10.19109/biota.v11i2.25232

References

M. Aznury and R. Prima Sari, “Produk Gel Hand Sanitizer Berbahan Dasar Ekstrak Cair Daun Sirih Hijau (Piper betle Linn.) Sebagai Antiseptik Gel Hand Sanitizer Products Made From Liquid Extract Of Green Betel Leaf (Piper betle Linn.) As An Antiseptic,” J. Kinet., vol. 11, no. 01, pp. 27–35, 2020.

D. Susanna, Zakianis, and Y. M. Indrawani, “Fly density and environmental factors in street vendor foods and its contamination with Escherichia coli,” Microbes Appl. Res. Curr. Adv. Challenges, Malaga, Spain, 14 - 16 Sept. 2011, pp. 263–267, 2012, doi: 10.1142/9789814405041_0053.

S. Cho et al., “Prevalence and characterization of Escherichia coli isolated from the upper oconee watershed in Northeast Georgia,” PLoS One, vol. 13, no. 5, pp. 1–15, 2018, doi: 10.1371/journal.pone.0197005.

D. J. Hikmat, F. Rani, Y. Ya, N. H. A. Halid, and J. Pusmarani, “Formulasi Gel Hand Sanitizer Dari Ekstrak Metanol Kulit Semangka (Citrullus lanatus),” J. Mandala Pharmacon Indones., vol. 8, no. 1, pp. 11–23, 2022, doi: 10.35311/jmpi.v8i1.128.

Mariana, Eddy Roflin, Pariyana, Aufa Muhammad Nadhif, Stella Yosephine Ribka, and Tania Ayu M, “The Accompaniment for the Making of Antiseptic Soap, Hand Sanitizers using Natural Ingredients of Lemongrass, Cymbopogon Citrates, as an Effort to Prevent COVID-19 Virus at Taklim Assembly ‘Active Tamaddun Community’, Palembang,” Int. J. Community Serv., vol. 1, no. 2, pp. 130–135, 2021, doi: 10.51601/ijcs.v1i2.20.

U. Rastuti, U. Rastuti, P. Lestari, R. Hidayatullah, and R. K. Habibie, “Antibacterial Test of The Essential Oil Fractions of Citronella (Cymbopogon nardus L.) Against Escherichia coli and Application as Hand Sanitizer Formulation,” Molekul, vol. 19, no. 2, pp. 235–241, 2024, doi: 10.20884/1.jm.2024.19.2.9773.

Putri Arisa and Nurhayati, “Pembuatan Hand Sanitizer Non-Alkohol dari Ekstrak Daun Sirih sebagai Solusi Adanya Sensivitas Kulit terhadap Alkohol,” J. Ris. dan Pengabdi. Masy., vol. 3, no. 1, pp. 28–32, 2023, doi: 10.22373/jrpm.v3i1.904.

T. Sjahriani, E. B. Wasito, and W. Tyasningsih, “Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage,” Int. J. Food Sci., vol. 2021, 2021, doi: 10.1155/2021/7383121.

A. Carroll-Portillo, C. N. Coffman, M. G. Varga, J. Alcock, S. B. Singh, and H. C. Lin, “Standard bacteriophage purification procedures cause loss in numbers and activity,” Viruses, vol. 13, no. 2, pp. 1–16, 2021, doi: 10.3390/v13020328.

R. P. Deshanda, R. Lingga, N. A. Hidayati, E. Sari, and R. Hertati, “FAG Salmonella Asal Limbah Pasar Ikan Dan Air Sungai Di Sekitar Kampus Universitas Bangka Belitung,” vol. 03, no. 2, pp. 45–49, 2018, doi: 10.33019/ekotonia.v3i2.758.

A. D. Wally, E. S. Pribadi, and S. Setyaningsih, “Bakteriofag spesifik Escherichia coli yang diisolasi dari berbagai sumber air di Bogor Tengah, Kota Bogor sebagai antibiotika alternatif,” J. Biol. Udayana, vol. 25, no. 2, p. 183, 2021, doi: 10.24843/jbiounud.2021.v25.i02.p1.

F. Abdul Choliq, M. Martosudiro, I. Istiqomah, and M. Fanhash Nijami, “Isolasi Dan Uji Kemampuan Bakteriofag Sebagai Agens Pengendali Penyakit Layu Bakteri (Ralstonia solanacearum) Pada Tanaman Tomat,” VIABEL J. Ilm. Ilmu-Ilmu Pertan., vol. 14, no. 1, pp. 8–20, 2020, doi: 10.35457/viabel.v14i1.996.

S. T. Abedon, S. J. Kuhl, B. G. Blasdel, and E. M. Kutter, “Phage treatment of human infections,” Bacteriophage, vol. 1, no. 2, pp. 66–85, 2011, doi: 10.4161/bact.1.2.15845.

H. Ge et al., “Isolation, characterization, and application in poultry products of a salmonella-specific bacteriophage, S55,” J. Food Prot., vol. 84, no. 7, pp. 1202–1212, 2021, doi: 10.4315/JFP-20-438.

M. E. S. Lopez, M. T. P. Gontijo, L. S. Batalha, and R. C. S. Mendonca, “Bio-Sanitization Using Specific Bacteriophages to Control Escherichia coli O157:H7 in Cherry Tomatoes,” Adv. J. Food Sci. Technol., vol. 16, no. SPL, pp. 92–101, 2018, doi: 10.19026/ajfst.16.5942.

Misrita, Wahyudi, N. Najati, and I. Qalyubi, “Pemanfaatan Daun Sirih (Piper Betle Linn) Sebagai Bahan Pembuatan Hands Sanitizer Alami Dalam Usaha Mengatasi Dampak Covid-19 Bagi Masyarakat Kelurahan Tanjung Pinang, Palangka Raya,” J. Chem. Inf. Model., vol. 14, no. 2, pp. 42–49, 2020, doi: 10.36873/aev.2020.14.2.42.

S. R. Ahmad, A. Kalam, and P. Ghosh, “Biocontrol effect of lytic bacteriophages against various foodborne diseases,” Biomed. Pharmacol. J., vol. 14, no. 2, pp. 709–723, 2021, doi: 10.13005/bpj/2174.

Y. Hu et al., “Characterization and genome sequence of the genetically unique Escherichia bacteriophage vB_EcoM_IME392,” Arch. Virol., vol. 166, no. 9, pp. 2505–2520, 2021, doi: 10.1007/s00705-021-05160-5.

E. Agustin, D. Prasetyo, N. Azzahra, and M. Muchtar, “Formulasi dan Uji Aktivitas Antibakteri Sediaan Spray Antiseptik Tangan Non Alkohol Infusa Daun Kemangi (Ocimum basilicum L.) dan Lidah Buaya (Aloe Vera (L.) Burm.f.) Terhadap Bakteri Staphylococcus aureus ATCC 25923,” Kesehat. Terap. J., vol. 9, no. 1, pp. 39–45, 2022, doi: 10.54816/jk.v9i1.494.

N. W. R. Martyasari, Y. Andayani, and W. Hajrin, “Optimisation of hand sanitiser gel formula of Tekelan leaves extract (Chromolaena odorata) using simplex lattice design method,” Bali Med. J., vol. 8, no. 3, pp. 769–773, 2019, doi: 10.15562/bmj.v8i3.1598.

A. S. Harti and E. Risanto, Mikrobiologi kesehatan : peran mikrobiologi dalam bidang kesehatan. Andi Yogyakarta, 2015.

Elfita et al., “Antibacterial activity of cordyline fruticosa leaf extracts and its endophytic fungi extracts,” Biodiversitas, vol. 20, no. 12, pp. 3804–3812, 2019, doi: 10.13057/biodiv/d201245.

H. W. Ackermann, “Bacteriophage taxonomy,” Microbiol. Aust., vol. 32, no. 2, p. 90, 2011, doi: 10.1071/ma11090.

L. R. Beuchat, “Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables,” Microbes Infect., vol. 4, no. 4, pp. 413–423, 2002, doi: 10.1016/S1286-4579(02)01555-1.

Seniati, Marbiah, and A. Irham, “Pengukuran Kepadatan Bakteri vibrio harveyi Secara Cepatdengan Menggunakan Spectrofotometer,” Agrokompleks, vol. 19, no. 2, pp. 12–15, 2019.

S. Altveş, H. K. Yildiz, and H. C. Vural, “Interaction of the microbiota with the human body in health and diseases,” Biosci. Microbiota, Food Heal., vol. 39, no. 2, pp. 23–32, 2020, doi: 10.12938/BMFH.19-023.

Z. Drulis-Kawa, G. Majkowska-Skrobek, B. Maciejewska, A.-S. Delattre, and R. Lavigne, “Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications,” Curr. Protein Pept. Sci., vol. 13, no. 8, pp. 699–722, 2013, doi: 10.2174/138920312804871193.

P. Amon and I. Sanderson, “What is the microbiome?,” Arch. Dis. Child. Educ. Pract. Ed., vol. 102, no. 5, pp. 258–261, 2017, doi: 10.1136/archdischild-2016-311643.

B. Franswinsly and M. Savira, “Isolasi bakteriofag dari limbah cair dengan aktivitas litik terhadap Escherichia coli,” J. Kedokt. Syiah Kuala, vol. 23, no. 1, pp. 68–73, 2023, doi: 10.24815/jks.v23i1.23684.

P. B. Allwood, Y. S. Malik, S. Maherchandani, C. W. Hedberg, and S. M. Goyal, “Effect of temperature on the survival of F-specific RNA coliphage, feline calicivirus, and Escherichia coli in chlorinated water,” Int. J. Environ. Res. Public Health, vol. 2, no. 3–4, pp. 442–446, 2005, doi: 10.3390/ijerph2005030008.

B. V. Jagannathan, S. Kitchens, P. P. Vijayakumar, S. Price, and M. Morgan, “Potential for bacteriophage cocktail to complement commercial sanitizer use on produce against Escherichia coli o157:H7,” Microorganisms, vol. 8, no. 9, pp. 1–13, 2020, doi: 10.3390/microorganisms8091316.

E. I. Bamishaiye et al., “Assessment of postharvest handling practices of green leafy vegetables and its challenges among holders in Ilorin, Nigeria,” J. Agric. Food Sci. Biotechnol., vol. 2, no. 1, pp. 9–17, 2024, doi: 10.58985/jafsb.2024.v02i01.32.

G. Kampf, S. Marschall, S. Eggerstedt, and C. Ostermeyer, “Efficacy of ethanol-based hand foams using clinically relevant amounts: A cross-over controlled study among healthy volunteers,” BMC Infect. Dis., vol. 10, 2010, doi: 10.1186/1471-2334-10-78.

J. Mahony, O. McAuliffe, R. P. Ross, and D. van Sinderen, “Bacteriophages as biocontrol agents of food pathogens,” Curr. Opin. Biotechnol., vol. 22, no. 2, pp. 157–163, 2011, doi: 10.1016/j.copbio.2010.10.008.

K. Sekatawa et al., “A review of phage mediated antibacterial applications,” Alexandria J. Med., vol. 57, no. 1, pp. 1–20, 2021, doi: 10.1080/20905068.2020.1851441.

M. C. Kuncara, F. N. Yuliati, and K. I. Prahesti, “The total plate count, Staphylococcus aureus, and pH value of raw chicken meat sold at the traditional markets in Maros regency,” IOP Conf. Ser. Earth Environ. Sci., vol. 788, no. 1, pp. 1–5, 2021, doi: 10.1088/1755-1315/788/1/012157.

N. Bagińska, M. Cieślik, A. Górski, and E. Jończyk‐matysiak, “The role of antibiotic resistant a. Baumannii in the pathogenesis of urinary tract infection and the potential of its treatment with the use of bacteriophage therapy,” Antibiotics, vol. 10, no. 3, 2021, doi: 10.3390/antibiotics10030281.

K. Ramirez, C. Cazarez-Montoya, H. S. Lopez-Moreno, and N. Castro-del Campo, “Bacteriophage cocktail for biocontrol of Escherichia coli O157:H7: Stability and potential allergenicity study,” PLoS One, vol. 13, no. 5, pp. 1–19, 2018, doi: 10.1371/journal.pone.0195023.

S. S. Y. Leung et al., “Effect of storage temperature on the stability of spray dried bacteriophage powders,” Eur. J. Pharm. Biopharm., vol. 127, no. February, pp. 213–222, 2018, doi: 10.1016/j.ejpb.2018.02.033.

C. Kimmelshue, A. S. Goggi, and R. Cademartiri, “The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1038/s41598-019-54068-3.