The Effect of El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Rainfall and Its Correlation with Consecutive Dry Days (CDD) of South Sumatra Province from 1981-2020

Main Article Content

Melly Ariska
Hamdi Akhsan
Muhammad Muslim
Sudirman Sudirman
Kistiono Kistiono


El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD)` are events where the phenomenon of rising and falling sea surface temperatures becomes unnatural. Stronger events where the sea surface temperature anomaly becomes large, then this disrupts local fish and bird populations. The ENSO and IOD phenomena also affect rainfall in several parts of Indonesia. This study analyzed the effect of ENSO and IOD phenomena on rainfall in South Sumatra Province from 1981 to 2020 and the correlation between Consecutive Dry Days (CDD) and Rainfall in South Sumatra Province for the last 40 years. ENSO data and IOD data were analyzed against rainfall data analyzed using a simple linear regression method and associated with CDD in South Sumatra Province with the correlation method. In addition, a correlation analysis was also carried out between the Niño 3.4 index and the Dipole Mode Index (DMI) with rainfall at two stations, namely the Palembang Climatology Station and the Sultan Mahmud Badaruddin II Meteorological Station to determine how much influence the ENSO and IOD phenomena had on rainfall in the Sumatra Province. South. The results of the analysis show that the effect of ENSO and IOD on rainfall at each station is generally not significant. The state of rainfall in the Province of South Sumatra for the last 40 years is almost not influenced by El Nio and La Nia. This is presumably due to the location of the South Sumatra Region which is in the Munsonal area. Monsoon areas are characterized by a unimodial type of rainfall (one peak of the rainy season) where in June, July and August the dry season occurs, while December, January and February are the wet months. The remaining six months is a transitional or transitional period (three months of transition from dry season to rainy season and three months of transition from rainy season to dry season).


Download data is not yet available.

Article Details

How to Cite
“The Effect of El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Rainfall and Its Correlation With Consecutive Dry Days (CDD) of South Sumatra Province from 1981-2020”. Jurnal Ilmu Fisika dan Pembelajarannya (JIFP) 6, no. 2 (December 29, 2022): 31–41. Accessed June 13, 2024.

How to Cite

“The Effect of El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Rainfall and Its Correlation With Consecutive Dry Days (CDD) of South Sumatra Province from 1981-2020”. Jurnal Ilmu Fisika dan Pembelajarannya (JIFP) 6, no. 2 (December 29, 2022): 31–41. Accessed June 13, 2024.


Aldrian, E. (2007). Decreasing trends in annual rainfalls over Indonesia: A threat for the national water resource? J. Meteorologi Dan Geofi Sika, 7(April 2007), 40–49.
Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452.
Ardiani, N. (2013). Penggunaan empirical orthogonal function (eof) untuk identifikasi karakteristik curah hujan (studi kasus: das ciujung-cidurian) normi ardiani.
Baeda, A. Y., Pao’Tonan, C., & Abdullah, D. (2019). The correlation between sea surface temperature and MJO incidence in Indonesian waters. IOP Conference Series: Earth and Environmental Science, 235(1).
Bhatti, A. S., Wang, G., Ullah, W., Ullah, S., Hagan, D. F. T., Nooni, I. K., Lou, D., & Ullah, I. (2020). Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan. Water (Switzerland), 12(3), 1–19.
Brandes, E. E., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41(6), 674–683.<0674:EIREWA>2.0.CO;2
De Beurs, K. M., Henebry, G. M., Owsley, B. C., & Sokolik, I. N. (2018). Large scale climate oscillation impacts on temperature, precipitation and land surface phenology in Central Asia. Environmental Research Letters, 13(6).
Dewanti, Y. P., Muliadi, & Adriat, R. (2018). Pengaruh El Niño Southern Oscillation (ENSO) Terhadap Curah Hujan di Kalimantan Barat. Prisma Fisika, 6(3), 145–151.
Handoko, E. Y., Filaili, R. B., & . Y. (2019). Analisa Fenomena Enso Di Perairan Indonesia Menggunakan Data Altimetri Topex/Poseidon Dan Jason Series Tahun 1993 – 2018. Geoid, 14(2), 43.
Harrison, D. E. (1998). El Nino-Southern Oscillation Sea Surface Temperature and Wind Anomalies. 98, 353–399.
Hermon, D. (2014). Impacts of land cover change on climate trend in Padang Indonesia. Indonesian Journal of Geography, 46(2), 138.
IPCC. (2018). IPCC Special Report on the impacts of global warming of 1.5°C. In Ipcc - Sr15.
Kumar, S., Silva, Y., & Moya-álvarez, A. S. (2019). Artikel Penelitian Perbedaan Musiman dan Regional dalam Peristiwa Curah Hujan Ekstrim dan Kontribusinya terhadap Curah Hujan Dunia : Pengamatan GPM. 2019.
Kumar, S., Silva, Y., Moya-Álvarez, A. S., & Martínez-Castro, D. (2019). Seasonal and regional differences in extreme rainfall events and their contribution to the world’s precipitation: GPM observations. Advances in Meteorology, 2019, 6–9.
Mulyana, E. (2002). Hubungan Antara ENSO dengan Variasi Curah Hujan di Indonesia. Jurnal Sains & Teknologi Modifikasi Cuaca, 3(1), 1–4.
Sari, F. M. (2016). Peramalan Curah Hujan Ekstrim Secara Spasial (Studi Kasus: Curah Hujan Bulanan Di Kabupaten Indramayu). Sambutan Ketua Panitia.
Siswanto, S., Oldenborgh, G. J. Van, Nederlands, K., Instituut, M., Nederlands, K., Instituut, M., Nederlands, K., & Instituut, M. (2015). Perubahan suhu , curah hujan ekstrim , dan curah hujan diurnal di kota Jakarta yang mengalami urbanisasi di masa lalu. November 2018.
Strategy, A. (2011). INDONESIA ADAPTATION STRATEGY Improving Capacity to Adapt. 39.
Tavakol, A., Rahmani, V., & Harrington, J. (2020). Evaluation of hot temperature extremes and heat waves in the Mississippi River Basin. Atmospheric Research, 239(February), 104907.
Thomas B. McKee, N. J. D. and J. K. (1993). Analysis of Standardized Precipitation Index (SPI) data for drought assessment. Water (Switzerland), 26(2), 1–72.
Ye, Z., & Li, Z. (2017). Spatiotemporal variability and trends of extreme precipitation in the Huaihe river basin, a climatic transitional zone in East China. Advances in Meteorology, 2017.
Zhan, Y. J., Ren, G. Y., Shrestha, A. B., Rajbhandari, R., Ren, Y. Y., Sanjay, J., Xu, Y., Sun, X. B., You, Q. L., & Wang, S. (2017). Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Advances in Climate Change Research, 8(3), 166–175.
Zhou, B., Xu, Y., Wu, J., Dong, S., & Shi, Y. (2016). Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. International Journal of Climatology, 36(3), 1051–1066.
Diani, R. (2015). Pengembangan Perangkat Pembelaran Fisika Berbasis Pendidikan Karakter Dengan Model Problem Basen Instruction. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 4 (2), 231-241.
Sugiyono. (2011). Metodologi Penelitian Pendidikan. Bandung: Alfabeta.