The Role of Gut Microbiota in Metabolism and Immune Response: A Literature Review on Metabolic Health
Main Article Content
Abstract
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
How to Cite
References
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, et al. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022;13:1–14. https://doi.org/10.3389/fmicb.2022.999001.
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016;7:189–200. https://doi.org/10.1080/19490976.2015.1134082.
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front Immunol 2022;13:866059. https://doi.org/10.3389/fimmu.2022.866059.
Hasibuan FEB, Kolondam dan BJ. Interaksi Antara Mikrobiota Usus Dan Sistem Kekebalan Tubuh Manusia. J Ilm Sains 2014;17:35. https://doi.org/10.35799/jis.17.1.2017.15221.
Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut microbiota and immune system interactions. Microorganisms 2020;8:1–22. https://doi.org/10.3390/microorganisms8101587.
Pratama RB, Berawi KN, Islamy N. Mikrobiota Usus dan Osteoartritis. J Ilmu Medis Indones 2021;1:1–6. https://doi.org/10.35912/jimi.v1i1.279.
Dinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology 2012;37:1369–78. https://doi.org/10.1016/j.psyneuen.2012.03.007.
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–14. https://doi.org/10.1038/nature11234.
Martínez Leo EE, Segura Campos MR. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 2020;71. https://doi.org/10.1016/j.nut.2019.110609.
McDonnell L, Gilkes A, Ashworth M, Rowland V, Harries TH, Armstrong D, et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 2021;13:1–18. https://doi.org/10.1080/19490976.2020.1870402.
Ojo O, Feng QQ, Ojo OO, Wang XH. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2020;12:1–21. https://doi.org/10.3390/nu12113239.
Penumutchu S, Korry BJ, Hewlett K, Belenky P. Fiber supplementation protects from antibiotic-induced gut microbiome dysbiosis by modulating gut redox potential. Nat Commun 2023;14:1–11. https://doi.org/10.1038/s41467-023-40553-x.
Palareti G, Legnani C, Cosmi B, Antonucci E, Erba N, Poli D, et al. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int J Lab Hematol 2016;38:42–9. https://doi.org/10.1111/ijlh.12426.
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021;12:1–14. https://doi.org/10.3389/fphys.2021.673341.
Antinozzi M, Giffi M, Sini N, Gallè F, Valeriani F, De Vito C, et al. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines 2022;10:1–16. https://doi.org/10.3390/biomedicines10020510.
Sudarmo S, Basrowi R, Chairunita C, Basrowi R. APLIKASI KLINIK PROBIOTIK PADA BAYI DAN ANAK, 2018, p. 48–77.
Wu F, Kong Y, Chen W, Liang D, Xiao Q, Hu L, et al. Improvement of vaginal probiotics Lactobacillus crispatus on intrauterine adhesion in mice model and in clinical practice. BMC Microbiol 2023;23:78. https://doi.org/10.1186/s12866-023-02823-y.
Dera N, Żeber-Lubecka N, Ciebiera M, Kosińska-Kaczyńska K, Szymusik I, Massalska D, et al. Intrauterine Shaping of Fetal Microbiota. J Clin Med 2024;13. https://doi.org/10.3390/jcm13175331.
Li H, Fu L, Chen X, Xu H, Jing Q, Yang C, et al. Gut Microbiota and Metabolome Description of Antibiotic-Treated Neonates From Parturients With Intrauterine Infection. Front Cell Infect Microbiol 2022;12:817832. https://doi.org/10.3389/fcimb.2022.817832.
Wen Y, Wu Q, Zhang L, He J, Chen Y, Yang X, et al. Association of Intrauterine Microbes with Endometrial Factors in Intrauterine Adhesion Formation and after Medicine Treatment. Pathog (Basel, Switzerland) 2022;11. https://doi.org/10.3390/pathogens11070784.
Corvaglia L, Tonti G, Martini S, Aceti A, Mazzola G, Aloisio I, et al. Influence of Intrapartum Antibiotic Prophylaxis for Group B Streptococcus on Gut Microbiota in the First Month of Life. J Pediatr Gastroenterol Nutr 2016;62:304–8. https://doi.org/10.1097/MPG.0000000000000928.
Sakwinska O, Foata F, Berger B, Brüssow H, Combremont S, Mercenier A, et al. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose? Benef Microbes 2017;8:763–78. https://doi.org/10.3920/BM2017.0064.
Matharu D, Ponsero AJ, Dikareva E, Korpela K, Kolho K-L, de Vos WM, et al. Bacteroides abundance drives birth mode dependent infant gut microbiota developmental trajectories. Front Microbiol 2022;13:953475. https://doi.org/10.3389/fmicb.2022.953475.
Vuillermin PJ, O’Hely M, Collier F, Allen KJ, Tang MLK, Harrison LC, et al. Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nat Commun 2020;11:1452. https://doi.org/10.1038/s41467-020-14552-1.
Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant Early Gut Colonization by Lachnospiraceae: High Frequency of Ruminococcus gnavus. Front Pediatr 2016;4:57. https://doi.org/10.3389/fped.2016.00057.
Vasilescu I-M, Chifiriuc M-C, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, et al. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2021;12:651081. https://doi.org/10.3389/fmicb.2021.651081.
Kashtanova DA, Popenko AS, Tkacheva ON, Tyakht AB, Alexeev DG, Boytsov SA. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2016;32:620–7. https://doi.org/10.1016/j.nut.2015.12.037.
Mikami K, Kimura M, Takahashi H. Influence of maternal bifidobacteria on the development of gut bifidobacteria in infants. Pharmaceuticals (Basel) 2012;5:629–42. https://doi.org/10.3390/ph5060629.
Zhang X, Mushajiang S, Luo B, Tian F, Ni Y, Yan W. The Composition and Concordance of Lactobacillus Populations of Infant Gut and the Corresponding Breast-Milk and Maternal Gut. Front Microbiol 2020;11:597911. https://doi.org/10.3389/fmicb.2020.597911.
Subramanya SH, Amberpet R, Chaudhary D, Nayak N, Padukone S, Bairy I, et al. Neonatal sepsis due to glycopeptide resistant Enterococcus faecium from colonized maternal gut- rare case evidence. Antimicrob Resist Infect Control 2019;8:29. https://doi.org/10.1186/s13756-019-0490-x.
Gothefors L, Carlsson B, Ahlstedt S, Hanson LA, Winberg J. Influence of maternal gut flora and colostral and cord serum antibodies on presence of Escherichia coli in faeces of the newborn infant. Acta Paediatr Scand 1976;65:225–32. https://doi.org/10.1111/j.1651-2227.1976.tb16542.x.
Inchingolo F, Inchingolo AD, Palumbo I, Trilli I, Guglielmo M, Mancini A, et al. The Impact of Cesarean Section Delivery on Intestinal Microbiota: Mechanisms, Consequences, and Perspectives-A Systematic Review. Int J Mol Sci 2024;25. https://doi.org/10.3390/ijms25021055.
Erika L, Ingegerd A, Bill H, Robert S, Inga-Lisa S, Nils Å, et al. High Rate of Transfer of Staphylococcus aureus from Parental Skin to Infant Gut Flora. J Clin Microbiol 2004;42:530–4. https://doi.org/10.1128/jcm.42.2.530-534.2004.
Moles L, Gómez M, Moroder E, Bustos G, Melgar A, Del Campo R, et al. Staphylococcus epidermidis in feedings and feces of preterm neonates. PLoS One 2020;15:e0227823. https://doi.org/10.1371/journal.pone.0227823.
Hoang DM, Levy EI, Vandenplas Y. The impact of Caesarean section on the infant gut microbiome. Acta Paediatr 2021;110:60–7. https://doi.org/10.1111/apa.15501.
Shi Y-C, Guo H, Chen J, Sun G, Ren R-R, Guo M-Z, et al. Initial meconium microbiome in Chinese neonates delivered naturally or by cesarean section. Sci Rep 2018;8:3255. https://doi.org/10.1038/s41598-018-21657-7.
Rocha Martin VN, Schwab C, Krych L, Voney E, Geirnaert A, Braegger C, et al. Colonization of Cutibacterium avidum during infant gut microbiota establishment. FEMS Microbiol Ecol 2019;95. https://doi.org/10.1093/femsec/fiy215.
Stokholm J, Thorsen J, Chawes BL, Schjørring S, Krogfelt KA, Bønnelykke K, et al. Cesarean section changes neonatal gut colonization. J Allergy Clin Immunol 2016;138:881-889.e2. https://doi.org/10.1016/j.jaci.2016.01.028.
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015;21:8787–803. https://doi.org/10.3748/wjg.v21.i29.8787.
Crovesy L, Masterson D, Rosado EL. Profile of the gut microbiota of adults with obesity: a systematic review. Eur J Clin Nutr 2020;74:1251–62. https://doi.org/10.1038/s41430-020-0607-6.
Robinson A, Wilde J, Allen-Vercoe E. Fusobacteria: physiology, form, and function, 2020, p. 95–134. https://doi.org/10.1016/B978-0-12-819672-4.00006-4.
Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015;23:141–7. https://doi.org/10.1016/j.mib.2014.11.013.
Park SY, Lee M, Lim SR, Kwon H, Lee YS, Kim JH, et al. Diversity and antimicrobial resistance in the streptococcus bovis/streptococcus equinus complex (Sbsec) isolated from korean domestic ruminants. Microorganisms 2021;9:1–24. https://doi.org/10.3390/microorganisms9010098.
Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F. Archaea and the human gut: new beginning of an old story. World J Gastroenterol 2014;20:16062–78. https://doi.org/10.3748/wjg.v20.i43.16062.
De Filippis F, Pellegrini N, Laghi L, Gobbetti M, Ercolini D. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome 2016;4. https://doi.org/10.1186/s40168-016-0202-1.
Duan M, Wang Y, Zhang Q, Zou R, Guo M, Zheng H. Characteristics of gut microbiota in people with obesity. PLoS One 2021;16:e0255446. https://doi.org/10.1371/journal.pone.0255446.
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver 2018;50:421–8. https://doi.org/10.1016/j.dld.2018.02.012.
Li J, Si H, Du H, Guo H, Dai H, Xu S, et al. Comparison of gut microbiota structure and Actinobacteria abundances in healthy young adults and elderly subjects: a pilot study. BMC Microbiol 2021;21:13. https://doi.org/10.1186/s12866-020-02068-z.
Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A Common Factor in Human Diseases. Biomed Res Int 2017;2017:9351507. https://doi.org/10.1155/2017/9351507.
Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012;9:219–30. https://doi.org/10.1038/nrgastro.2012.14.
Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms 2018;6. https://doi.org/10.3390/microorganisms6030075.
Macchione IG, Lopetuso LR, Ianiro G, Napoli M, Gibiino G, Rizzatti G, et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci 2019;23:8075–83. https://doi.org/10.26355/eurrev_201909_19024.
Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology 2022;168. https://doi.org/10.1099/mic.0.001156.
Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D, et al. Probiotic Lactobacillus plantarum Promotes Intestinal Barrier Function by Strengthening the Epithelium and Modulating Gut Microbiota. Front Microbiol 2018;9:1953. https://doi.org/10.3389/fmicb.2018.01953.
Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 2013;5:23. https://doi.org/10.1186/1757-4749-5-23.
Krista D, G. PE. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectr 2017;5:10.1128/microbiolspec.bad-0014–2016. https://doi.org/10.1128/microbiolspec.bad-0014-2016.
Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013;16:255–61. https://doi.org/10.1016/j.mib.2013.06.003.
Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009;15:1183–9. https://doi.org/10.1002/ibd.20903.
Trzeciak P, Herbet M. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients 2021;13. https://doi.org/10.3390/nu13030927.
Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020;8. https://doi.org/10.3390/microorganisms8040573.
Nie K, Ma K, Luo W, Shen Z, Yang Z, Xiao M, et al. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front Cell Infect Microbiol 2021;11:757718. https://doi.org/10.3389/fcimb.2021.757718.
Kadowaki R, Tanno H, Maeno S, Endo A. Spore-forming properties and enhanced oxygen tolerance of butyrate-producing Anaerostipes spp. Anaerobe 2023;82:102752. https://doi.org/10.1016/j.anaerobe.2023.102752.
O’Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol 2016;7:925. https://doi.org/10.3389/fmicb.2016.00925.
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 2020;69:2232–43. https://doi.org/10.1136/gutjnl-2020-322260.
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, et al. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021;76:714–34. https://doi.org/10.1111/all.14548.
Bui TPN, Mannerås-Holm L, Puschmann R, Wu H, Troise AD, Nijsse B, et al. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nat Commun 2021;12:4798. https://doi.org/10.1038/s41467-021-25081-w.
Huang T, Peng X-Y, Gao B, Wei Q-L, Xiang R, Yuan M-G, et al. The Effect of Clostridium butyricum on Gut Microbiota, Immune Response and Intestinal Barrier Function During the Development of Necrotic Enteritis in Chickens. Front Microbiol 2019;10:2309. https://doi.org/10.3389/fmicb.2019.02309.
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut Microbiota Modulation in the Context of Immune-Related Aspects of Lactobacillus spp. and Bifidobacterium spp. in Gastrointestinal Cancers. Nutrients 2021;13. https://doi.org/10.3390/nu13082674.
Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 2019;364:1179–84. https://doi.org/10.1126/science.aaw7479.
Zafar H, Saier MHJ. Gut Bacteroides species in health and disease. Gut Microbes 2021;13:1–20. https://doi.org/10.1080/19490976.2020.1848158.
van den Bogert B, Meijerink M, Zoetendal EG, Wells JM, Kleerebezem M. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One 2014;9:e114277. https://doi.org/10.1371/journal.pone.0114277.
Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A, et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 2021;14:113–24. https://doi.org/10.1038/s41385-020-0296-4.
Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb Pathog 2020;149:104344. https://doi.org/10.1016/j.micpath.2020.104344.
Hillman ET, Kozik AJ, Hooker CA, Burnett JL, Heo Y, Kiesel VA, et al. Comparative genomics of the genus <i>Roseburia</i> reveals divergent biosynthetic pathways that may influence colonic competition among species. Microb Genomics 2020;6. https://doi.org/10.1099/mgen.0.000399.
Nilsen M, Madelen Saunders C, Leena Angell I, Arntzen MØ, Lødrup Carlsen KC, Carlsen K-H, et al. Butyrate Levels in the Transition from an Infant- to an Adult-Like Gut Microbiota Correlate with Bacterial Networks Associated with Eubacterium Rectale and Ruminococcus Gnavus. Genes (Basel) 2020;11. https://doi.org/10.3390/genes11111245.
Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH, Flint HJ, et al. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe 2012;18:523–9. https://doi.org/10.1016/j.anaerobe.2012.09.002.
Devaux CA, Million M, Raoult D. The Butyrogenic and Lactic Bacteria of the Gut Microbiota Determine the Outcome of Allogenic Hematopoietic Cell Transplant. Front Microbiol 2020;11:1642. https://doi.org/10.3389/fmicb.2020.01642.
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, et al. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023;13:1103836. https://doi.org/10.3389/fmicb.2022.1103836.
Simpson HL, Campbell BJ. Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 2015;42:158–79. https://doi.org/10.1111/apt.13248.
Million M, Tomas J, Wagner C, Lelouard H, Raoult D, Gorvel J-P. New insights in gut microbiota and mucosal immunity of the small intestine. Hum Microbiome J 2018;7–8:23–32. https://doi.org/https://doi.org/10.1016/j.humic.2018.01.004.
Grenda T, Grenda A, Domaradzki P, Krawczyk P, Kwiatek K. Probiotic Potential of Clostridium spp.-Advantages and Doubts. Curr Issues Mol Biol 2022;44:3118–30. https://doi.org/10.3390/cimb44070215.
Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. Front Immunol 2020;11:615056. https://doi.org/10.3389/fimmu.2020.615056.
Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V, Avila-Campos MJ. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Brazilian J Microbiol [Publication Brazilian Soc Microbiol 2015;46:1135–40. https://doi.org/10.1590/S1517-838246420140665.
Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek 2008;94:35–50. https://doi.org/10.1007/s10482-008-9232-4.
Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009;9:123. https://doi.org/10.1186/1471-2180-9-123.
Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. Roseburia spp.: a marker of health? Future Microbiol 2017;12:157–70. https://doi.org/10.2217/fmb-2016-0130.
Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol 2020;11:24. https://doi.org/10.1186/s40104-019-0402-1.
Luu TH, Michel C, Bard J-M, Dravet F, Nazih H, Bobin-Dubigeon C. Intestinal Proportion of Blautia sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutr Cancer 2017;69:267–75. https://doi.org/10.1080/01635581.2017.1263750.
Scott KP, Duncan SH, Flint HJ. Dietary fibre and the gut microbiota. Nutr Bull 2008;33:201–11. https://doi.org/10.1111/j.1467-3010.2008.00706.x.
Valeriano VD V, Balolong MP, Kang D-K. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 2017;122:554–67. https://doi.org/10.1111/jam.13364.
Sun J, Fang D, Wang Z, Liu Y. Sleep Deprivation and Gut Microbiota Dysbiosis: Current Understandings and Implications. Int J Mol Sci 2023;24. https://doi.org/10.3390/ijms24119603.
Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, et al. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. Biology (Basel) 2022;11. https://doi.org/10.3390/biology11030479.
Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk–Karolczuk J, Domagalska M, Cichoń J, et al. Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Sci Med Rehabil 2022;14:1–22. https://doi.org/10.1186/s13102-022-00513-2.
Belizário JE, Faintuch J, Garay-Malpartida M. Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators Inflamm 2018;2018:1–12. https://doi.org/10.1155/2018/2037838.
Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr 2020;123:1127–37. https://doi.org/10.1017/S0007114520000380.
Nibali L, Henderson B, Sadiq ST, Donos N. Insults in Chronic Inflammatory Diseases. Microbiology 2014;1:1–10.
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry 2016;21:738–48. https://doi.org/10.1038/mp.2016.50.
Di Gioia D, Aloisio I, Mazzola G, Biavati B. Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol 2014;98:563–77. https://doi.org/10.1007/s00253-013-5405-9.
Rea MC, O’Sullivan O, Shanahan F, O’Toole PW, Stanton C, Ross RP, et al. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 2012;50:867–75. https://doi.org/10.1128/JCM.05176-11.
Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Front Microbiol 2016;7:1204. https://doi.org/10.3389/fmicb.2016.01204.
Saarenpää M, Roslund MI, Puhakka R, Grönroos M, Parajuli A, Hui N, et al. Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland. Int J Environ Res Public Health 2021;18. https://doi.org/10.3390/ijerph18073742.
Gupta S, Khandait M, Khunger S. Exploring the gut microbiota of rural region of Haryana (India): Sociodemographic, socioeconomic factors and lifestyle. Clin Epidemiol Glob Heal 2024;30:101806. https://doi.org/10.1016/j.cegh.2024.101806.
Zhang J, Sun Z, Jiang S, Bai X, Ma C, Peng Q, et al. Probiotic Bifidobacterium lactis V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. MSystems 2019;4. https://doi.org/10.1128/mSystems.00017-19.
Yoon K, Kim N. Roles of Sex Hormones and Gender in the Gut Microbiota. J Neurogastroenterol Motil 2021;27:314–25. https://doi.org/10.5056/jnm20208.
Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child Obes 2018;14:501–9. https://doi.org/10.1089/chi.2018.0040.
Remely M, Hippe B, Zanner J, Aumueller E, Brath H, Haslberger AG. Gut Microbiota of Obese, Type 2 Diabetic Individuals is Enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after Weight Loss. Endocr Metab Immune Disord Drug Targets 2016;16:99–106. https://doi.org/10.2174/1871530316666160831093813.
Lee HJ, Lee SW, Cha HR, Ha EK, Kim JH, Shin SY, et al. Acquired susceptibility to autoimmune diseases in pediatric patients with Escherichia coli infection: A population-matched retrospective cohort study. J Autoimmun 2023;137:102997. https://doi.org/10.1016/j.jaut.2023.102997.